图表信息题的类型有:图形信息型,生活情境型. 查看更多

 

题目列表(包括答案和解析)

甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:
(1)他们都骑行了20km;
(2)乙在途中停留了0.5h;
(3)甲、乙两人同时到达目的地;
(4)相遇后,甲的速度小于乙的速度;
根据图象信息,以上说法正确的有
2
2
个.

查看答案和解析>>

甲乙两位同学骑自行车从A地沿同一路线到B地,已知乙比甲先出发.他们离出发地的距离s(km)与骑车时间t(h)之间的函数关系如图所示.给出下列说法:
(1)他们都骑了20km;
(2)甲乙两人同时到达目的地;
(3)乙在途中停留了0.5小时;
(4)相遇后,甲的速度小于乙的速度.
根据图象信息,以上说法正确的有
(1)、(3)
(1)、(3)

查看答案和解析>>

7、甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示.给出下列说法:
(1)他们都骑行了20km;
(2)乙在途中停留了0.5h;
(3)甲、乙两人同时到达目的地;
(4)相遇后,甲的速度<乙的速度.
根据图象信息,以上说法正确的有(  )

查看答案和解析>>

(2013•连云港)我市某海域内有一艘轮船发生故障,海事救援船接到求救信号后立即从港口出发沿直线匀速前往救援,与故障渔船会合后立即将其拖回.如图折线段O-A-B表示救援船在整个航行过程中离港口的距离y(海里)随航行时间x(分钟)的变化规律.抛物线y=ax2+k表示故障渔船在漂移过程中离港口的距离y(海里)随漂移时间x(分钟)的变化规律.已知救援船返程速度是前往速度的
23
.根据图象提供的信息,解答下列问题:
(1)救援船行驶了
16
16
海里与故障船会合;
(2)求该救援船的前往速度;
(3)若该故障渔船在发出求救信号后40分钟内得不到营救就会有危险,请问救援船的前往速度每小时至少是多少海里,才能保证故障渔船的安全.

查看答案和解析>>

(2012•随州)在一次数学活动课上,老师出了一道题:
(1)解方程x2-2x-3=0
巡视后,老师发现同学们解此道题的方法有公式法、配方法和十字相乘法(分解因式法).接着,老师请大家用自己熟悉的方法解第二道题:
(2)解关于x的方程mx2+(m-3)x-3=0(m为常数,且m≠0).
老师继续巡视,及时观察、点拨大家,再接着,老师将第二道题变式为第三道题:
(3)已知关于x的函数y=mx2+(m-3)x-3(m为常数)
①求证:不论m为何值,此函数的图象恒过x轴、y轴上的两个定点(设x轴上的定点为A,y轴上的定点为C);
②若m≠0时,设此函数的图象与x轴的另一个交点为B.当△ABC为锐角三角形时,观察图象,直接写出m的取值范围.
请你也用自己熟悉的方法解上述三道题.

查看答案和解析>>


同步练习册答案