21. 解:(1)设甲工程队单独完成该工程需x天.则乙工程队单独完成该工程需(x+25)天.------------1分 根据题意得: . ------------3分 方程两边同乘以x(x+25).得 30(x+25)+30x= x(x+25). 即 x2-35x-750=0. 解之.得x1=50.x2=-15. ------------5分 经检验.x1=50.x2=-15都是原方程的解. 但x2=-15不符合题意.应舍去. ------------6分 ∴ 当x=50时.x+25=75. 答:甲工程队单独完成该工程需50天.则乙工程队单独完成该工程需75天. --------7分 (2)此问题只要设计出符合条件的一种方案即可. 方案一: 由甲工程队单独完成.------------8分 所需费用为:2500×50=125000(元).------------10分 方案二: 甲乙两队合作完成. 所需费用为:×30=135000(元).--------10分 其它方案略. 查看更多

 

题目列表(包括答案和解析)

注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.
我市开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍.该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.
(Ⅰ)求甲、乙两队单独完成这项工程各需要多少天;
(Ⅱ)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.
解:(Ⅰ)设甲队单独完成这项目需要x天,则乙队单独完成这项工程需要
 
天;
根据题意列出含x的方程式
 

解得x=
 

检验:
 
;则2x=
 

答:
 

(Ⅱ)设甲、乙两队合作完成这项工程需要y天.
根据题意列出含y的方程式
 
,解得y=
 

需要施工费用:
 
(万元);
答:
 

查看答案和解析>>

注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.
方案一:甲队单独完成这项工程刚好能够如期完成;
方案二:乙队单独完成这项工程要比规定的时间多用10天;
方案三:若甲、乙两队合作8天,余下的由乙队单独做也正好如期完成.
又从甲、乙两个工程队的投标书中得知:每天需支付甲队的工程款1.5万元,乙队的工程款1.1万元.
试问,在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
解题方案:
设甲队单独完成需x天,则乙队单独完成需(x+10)天.
(1)用含x的代数式表示:
甲队每天可以完成这项工程的工作量是工程总量的
1
x
1
x

乙队每天可以完成这项工程的工作量是工程总量的
1
x+10
1
x+10

根据题意,列出相应方程
8
x
+
x
x+10
=1
8
x
+
x
x+10
=1

解这个方程,得
x=40
x=40

检验:
x=40是原方程的根
x=40是原方程的根

(2)方案一得工程款为
40×1.5=60(万元)
40×1.5=60(万元)

方案二不合题意,舍去
方案三的工程款为
8×1.5+40×1.1=56(万元)
8×1.5+40×1.1=56(万元)

所以在不耽误工期的前提下,应选择方
(3)
(3)
能节省工程款.

查看答案和解析>>

注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.
方案一:甲队单独完成这项工程刚好能够如期完成;
方案二:乙队单独完成这项工程要比规定的时间多用10天;
方案三:若甲、乙两队合作8天,余下的由乙队单独做也正好如期完成.
又从甲、乙两个工程队的投标书中得知:每天需支付甲队的工程款1.5万元,乙队的工程款1.1万元.
试问,在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
解题方案:
设甲队单独完成需x天,则乙队单独完成需(x+10)天.
(1)用含x的代数式表示:
甲队每天可以完成这项工程的工作量是工程总量的______
乙队每天可以完成这项工程的工作量是工程总量的______
根据题意,列出相应方程______
解这个方程,得______
检验:______
(2)方案一得工程款为______;
方案二不合题意,舍去
方案三的工程款为______
所以在不耽误工期的前提下,应选择方______能节省工程款.

查看答案和解析>>

注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.
我市开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍.该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.
(Ⅰ)求甲、乙两队单独完成这项工程各需要多少天;
(Ⅱ)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.
解:(Ⅰ)设甲队单独完成这项目需要x天,则乙队单独完成这项工程需要________天;
根据题意列出含x的方程式________;
解得x=________;
检验:________;则2x=________;
答:________.
(Ⅱ)设甲、乙两队合作完成这项工程需要y天.
根据题意列出含y的方程式________,解得y=________;
需要施工费用:________(万元);
答:________.

查看答案和解析>>

注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.
方案一:甲队单独完成这项工程刚好能够如期完成;
方案二:乙队单独完成这项工程要比规定的时间多用10天;
方案三:若甲、乙两队合作8天,余下的由乙队单独做也正好如期完成.
又从甲、乙两个工程队的投标书中得知:每天需支付甲队的工程款1.5万元,乙队的工程款1.1万元.
试问,在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
解题方案:
设甲队单独完成需x天,则乙队单独完成需(x+10)天.
(1)用含x的代数式表示:
甲队每天可以完成这项工程的工作量是工程总量的______
乙队每天可以完成这项工程的工作量是工程总量的______
根据题意,列出相应方程______
解这个方程,得______
检验:______
(2)方案一得工程款为______;
方案二不合题意,舍去
方案三的工程款为______
所以在不耽误工期的前提下,应选择方______能节省工程款.

查看答案和解析>>


同步练习册答案