2. 解法一: ⑴ 取B1C1中点D.连结ND.A1D.所以DN//BB1///AA1又. 所以四边形A1MND为平行四边形.所以MN//A1D, 又.所以MN//平面A1B1C1, ⑵ 三棱柱ABC-A1B1C1为直三棱柱.所以CC1⊥BC. 又∠ACB=90°.所以BC⊥平面A1MC1. 在平面ACC1A中过C1做C1H⊥CM.又BC⊥C1H.所以C1H为C1到平面BMC的距离. 在等三角形CMC1中.CC1=. 所以 ⑶ 在平面ACC1A1上作CF⊥C1M.交C1M于点E.A1C1于点F.则CE为BE在平面ACC1A1上的射影.所以BE⊥CM1.所以∠BEF为二面角B-C1M-A1的平面角. 在等腰三角形CMC1中.CE=C1H=. 所以 所以 -14分 解法二: ⑴ 如图.以点C为坐标原点.以CB所在 直线为Ox轴.CA所在直线为Oy轴.CC1所在直线 为Oz轴.建立空间直角坐标系. 由已知得... ,, 所以 所以所以MN//A1D, 又所以MN//平面A1B1C1, ⑵ B. 设垂直于平面BCM的向量 所以所以 所以C1到平面BMC的距离为 ⑶ 三棱柱ABC-A1B1C1为直三棱柱.所以CC1⊥BC. 设垂直于平面BMC1的向量 所以 即 所以 所求二面角的大小 查看更多

 

题目列表(包括答案和解析)

⊙O1和⊙O2的极坐标方程分别为

⑴把⊙O1和⊙O2的极坐标方程化为直角坐标方程;

⑵求经过⊙O1,⊙O2交点的直线的直角坐标方程.

【解析】本试题主要是考查了极坐标的返程和直角坐标方程的转化和简单的圆冤啊位置关系的运用

(1)中,借助于公式,将极坐标方程化为普通方程即可。

(2)中,根据上一问中的圆的方程,然后作差得到交线所在的直线的普通方程。

解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.

(I),由.所以

为⊙O1的直角坐标方程.

同理为⊙O2的直角坐标方程.

(II)解法一:由解得

即⊙O1,⊙O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.

解法二: 由,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x

 

查看答案和解析>>

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>

设椭圆(常数)的左右焦点分别为是直线上的两个动点,

(1)若,求的值;

(2)求的最小值.

【解析】第一问中解:设

    由,得

  ② 

第二问易求椭圆的标准方程为:

所以,当且仅当时,取最小值

解:设 ……………………1分

,由     ①……2分

(1)由,得  ②   ……………1分

    ③    ………………………1分

由①、②、③三式,消去,并求得. ………………………3分

(2)解法一:易求椭圆的标准方程为:.………………2分

, ……4分

所以,当且仅当时,取最小值.…2分

解法二:, ………………4分

所以,当且仅当时,取最小值

 

查看答案和解析>>

袋中黑白球共7个,从中任取2个球都是白球的概率为
17
,现有甲、乙两人从袋中轮流摸取1球,规定甲先乙后,然后甲再取…,取后不放回,直到两人中有一人取到白球就终止,每个球在每次被摸出的机会均等.
(Ⅰ)求袋中原有白球的个数;
(Ⅱ)求甲取到白球的概率.

查看答案和解析>>

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
17
,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.

查看答案和解析>>


同步练习册答案