本小主要考查概率.统计等基础知识.考查数据处理能力.运算求解能力以及应用数学知识分析和解决实际问题的能力.满分13分. 解:(Ⅰ) 作出茎叶图如下: --------------- 4分 (Ⅱ) 派甲参赛比较合适.理由如下: . . . ∵.. ∴甲的成绩较稳定.派甲参赛比较合适. ------------ 8分 注:本小题的结论及理由均不唯一.如果考生能从统计学的角度分析.给出其他合理回答.同样给分.如 派乙参赛比较合适.理由如下: 从统计的角度看.甲获得85分以上的概率. 乙获得85分以上的概率. ∵.∴派乙参赛比较合适. (Ⅲ) 记“甲同学在一次数学竞赛中成绩高于80分 为事件A. 则. ---------------------- 9分 随机变量的可能取值为0.1.2.3.且. ∴.. 所以变量的分布列为: 0 1 2 3 P ----------------------------- 11分 . (或) ------------------ 13分 查看更多

 

题目列表(包括答案和解析)

从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图所示,观察图形,回答下列问题:

⑴80~90这一组的频数、频率分别是多少?

⑵估计这次环保知识竞赛的及格率(60分及以上为及格). (本小题满分10分)

【解析】本试题主要考查了统计和概率的综合运用。

第一问频率:0.025×10=0.25;……………3分

频数:60×0.25=15. ………………6分

第二问0.015×10+0.025×10+0.03×10+0.005×10=0.75

解:(1)频率:0.025×10=0.25;……………3分

频数:60×0.25=15. ………………6分

(2)0.015×10+0.025×10+0.03×10+0.005×10=0.75

 

查看答案和解析>>

为了了解某市工人开展体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂

(Ⅰ)从A,B,C区中分别抽取的工厂个数;

(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,计算这2个工厂中至少有1个来自A区的概率.

【解析】本试题主要考查了统计和概率的综合运用。

第一问工厂总数为18+27+18=63,样本容量与总体中的个体数比为7/63=1/9…3分

所以从A,B,C三个区中应分别抽取的工厂个数为2,3,2。

第二问设A1,A2为在A区中的抽得的2个工厂,B1,B2­,B3为在B区中抽得的3个工厂,

C1,C2为在C区中抽得的2个工厂。

这7个工厂中随机的抽取2个,全部的可能结果有1/2*7*6=32种。

随机的抽取的2个工厂至少有一个来自A区的结果有A1,A2),A1,B2),A1,B1),

A1,B3)A1,C2),A1,C1), …………9分

同理A2还能给合5种,一共有11种。  

所以所求的概率为p=11/21

 

查看答案和解析>>

(本小题满分13分)

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(1)求椭圆C的方程;

(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。

【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。

查看答案和解析>>

每次抛掷一枚骰子(六个面上分别标以数字

(I)连续抛掷2次,求向上的数不同的概率;

(II)连续抛掷2次,求向上的数之和为6的概率;

(III)连续抛掷5次,求向上的数为奇数恰好出现3次的概率。

本小题主要考查概率的基本知识,运用数学知识解决实际问题的能力。满分12分。

查看答案和解析>>

(本小题满分13分)

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(1)求椭圆C的方程;

(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。

【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。

查看答案和解析>>


同步练习册答案