题目列表(包括答案和解析)
已知数列
是公差不为零的等差数列,
,且
、
、
成等比数列。
⑴求数列
的通项公式;
⑵设
,求数列
的前
项和
。
【解析】第一问中利用等差数列
的首项为
,公差为d,则依题意有:
![]()
第二问中,利用第一问的结论得到数列的通项公式,
,利用裂项求和的思想解决即可。
(本小题满分14分)
设数列
是公差为
的等差数列,其前
项和为
.
(1)已知
,
,
(ⅰ)求当![]()
时,
的最小值;
(ⅱ)当![]()
时,求证:
;
(2)是否存在实数
,使得对任意正整数
,关于
的不等式
的最小正整数解为
?若存在,则求
的取值范围;若不存在,则说明理由.
(本小题满分14分)
设数列
是公差为
的等差数列,其前
项和为
.
(1)已知
,
,
(ⅰ)求当![]()
时,
的最小值;
(ⅱ)当![]()
时,求证:
;
(2)是否存在实数
,使得对任意正整数
,关于
的不等式
的最小正整数解为
?若存在,则求
的取值范围;若不存在,则说明理由.
(本小题满分14分)
设数列
是公差为
的等差数列,其前
项和为
.
(1)已知
,
,
(ⅰ)求当![]()
时,
的最小值;
(ⅱ)当![]()
时,求证:
;
(2)是否存在实数
,使得对任意正整数
,关于
的不等式
的最小正整数解为
?若存在,则求
的取值范围;若不存在,则说明理由.
(本小题满分14分)
设数列
是公差为
的等差数列,其前
项和为
.
(1)已知
,
,
(ⅰ)求当![]()
时,
的最小值;
(ⅱ)当![]()
时,求证:
;
(2)是否存在实数
,使得对任意正整数
,关于
的不等式
的最小正整数解为
?若存在,则求
的取值范围;若不存在,则说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com