4.转化与化归的思想 在解决恒成立及复合函数等问题时.往往可以把问题转化为指数函数.对数函数.二次函数.幂函数等我们熟悉的函数去研究.将复杂的问题分解.归结为简单问题. 例4 已知函数 ..若对任意.>0恒成立.试求实数的取值范围. 解:在区间[1.+)上.>0恒成立恒成立. 设. ∵ =递增. ∴当=1时..当且仅当>0时.函数>0恒成立. 故>-3 查看更多

 

题目列表(包括答案和解析)

鸡兔同笼

  你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一.大约在1 500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?

  你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?

  解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”.这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了.

  这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.这种思维方法叫化归法.

  化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题.

1.古代《孙子算经》就有这么好的解法——化归法,这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.对此,谈谈你的看法.

2.我国古代数学研究一直处于领先地位,现在有所落后了,对此,我们不应只感叹古人的伟大,而更应该树立为科学而奋斗终身的信心,同学们,你们准备好了吗?

查看答案和解析>>

在求变速直线运动的路程问题中,采用了     的方法,化归为求     的路程问题.

      

查看答案和解析>>

函数y=sinx与y=tanx的图象在(-
π
2
π
2
)上的交点有(  )

查看答案和解析>>

设定义在R上的函数f(x)满足f(x+π)=f(x-π),f(
π
2
-x
)=f(
π
2
+x
),当x∈[-
π
2
π
2
]
时,0<f(x)<1;当x∈(-
π
2
π
2
)
且x≠0时,x•f′(x)<0,则y=f(x)与y=cosx的图象在[-2π,2π]上的交点个数是(  )

查看答案和解析>>

(2013•江西)如果,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=(  )

查看答案和解析>>


同步练习册答案