如图.直线与椭圆交于两点.记的面积为. (I)求在.的条件下.的最大值, (II)当.时.求直线的方程. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分) 如图,在直角坐标系中,设椭圆的左右两个焦点

分别为. 过右焦点且与轴垂直的直线与椭圆相交,其中一个交点为.

(1)求椭圆的方程;

(2)设椭圆的一个顶点为,直线交椭圆于另一点,求△的面积.

查看答案和解析>>

(本小题满分14分)

椭圆方程为抛物线方程为如图4所示,过点轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点

       (1)求满足条件的椭圆方程和抛物线方程;

       (2)设AB分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。

查看答案和解析>>

(本小题满分14分)

椭圆方程为抛物线方程为如图4所示,过点轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点

       (1)求满足条件的椭圆方程和抛物线方程;

       (2)设AB分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。

 

查看答案和解析>>

(本小题满分14分)
椭圆方程为抛物线方程为如图4所示,过点轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点
(1)求满足条件的椭圆方程和抛物线方程;
(2)设AB分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。

查看答案和解析>>

(本小题满分14分)

如图,已知圆是椭圆的内接△的内切圆,其中为椭圆的左顶点。

(1)求圆的半径

(2)过点作圆的两条切线交椭圆于两点,证明:直线与圆相切。

查看答案和解析>>


同步练习册答案