题目列表(包括答案和解析)
形如
的函数称为“幂指型函数”,它的求导过程可概括成:取对数——两边对
求导——代入还原;例如:
,取对数
,对
求导
,代入还原
;给出下列命题:
①当
时,函数
的导函数是
;②当
时,函数
在
上单增,在
上单减;③当
时,方程
有根;④当
时,若方程
有两根,则
;
其中正确的命题是
我们把形如
的函数称为幂指函数,幂指函数在求导时,可以利用对数:在函数解析式两边求对数得
,两边对
求导数,得
于是
,运用此方法可以求得函数
在(1,1)处的切线方程是 _________
Ⅰ(理)我们把形如
的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边求对数得
,两边求导数,得
,于是
,运用此方法可以探求得函数
的一个单调递增区间是
A.
B.
C.
D.
我们把形如
的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得
,两边对x求导数,得
于是
,运用此方法可以求得函数
在(1,1)处的切线方程是 .
我们把形如
的函数称为幂指函数,幂指函数在求导时,可以利用对法数:在函数解析式两边求对数得
,两边对x求导数,得
于是
,运用此方法可以求得函数
在(1,1)处的切线方程是 ▲
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com