12.在实数的原有运算法则中.我们补充定义新运算“? 如下: 当a≥b时.a?b=a,当a<b时.a?b=b2. 则函数f(x)=(1?x)·x-(2?x)(x∈[-2,2])的最大值等于 (“· 和“- 仍为通常的乘法和减法). 答案:6 解析:当x∈[-2,1]时.f(x)=1·x-2=x-2.f(x)max=-1, 当x∈(1,2]时.f(x)=x2·x-2=x3-2.f(x)max=6.故填6. 查看更多

 

题目列表(包括答案和解析)

在实数的原有运算法则中,我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=a,当a<b时,a⊕b=b2.已知函数f(x)=(2⊕x)•x-(m⊕x)(m<2),若对任意x∈[-3,2],f(x)≥-5恒成立,则实数m的取值范围是
 
(“•”“-”仍为通常的乘法与减法)

查看答案和解析>>

在实数的原有运算法则中,定义新运算a?b=a-2b,则|x?(1-x)|+|(1-x)?x|>3的解集为
 

查看答案和解析>>

在实数的原有运算法则中,我们补充定义新运算“⊕”,其中S=a?b的运算原理如图所示,则集合{y|y=(1⊕x)•x-(2⊕x),x∈[-2,2]}(注:“•”和“-”仍为通常的乘法和减法)的最大元素是(  )

查看答案和解析>>

(2012•广东模拟)在实数的原有运算法则中,定义新运算a?b=3a-b,则|x?(4-x)|+|(1-x)?x|>8的解集为
{x|x<-
1
8
,x>
15
8
}
{x|x<-
1
8
,x>
15
8
}

查看答案和解析>>

在实数的原有运算法则中,我们补充定义新运算“⊕”:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2. 则函数f(x)=(1⊕x)•x-(2⊕x),x∈[-2,2]的最大值等于
6
6
(其中“•”和“-”仍为通常的乘法和减法)

查看答案和解析>>


同步练习册答案