题目列表(包括答案和解析)
计算:
+
+…+
+
(n为正整数).
这个式子共有n项,属于异分母分数加减的类型.如果先通分,将各项化为同分母分数的话,分母将十分庞大,这是很困难的,在实际运算的时候也是不现实的,那么怎么办呢?
让我们分析一下各项的特点:都是
的形式,当n取从1开始渐次增大的自然数时,就是各项了.可以把
看成是各项的代表式.我们知道
-
=
=
,
故
=
-
.
利用这一点,每一项都可以拆成两项,由于n是按自然数逐次递增的,所以前后两项拆开后会有相同部分可以抵消,如:
-![]()
=(
-
)+(
-
)
=1-
+
-![]()
=
.
所以可得
+
+…+
+![]()
=(
-
)+(
-
)+…+(
-
)+(
-
)
=1-
+
-
+…+
-
+
-![]()
=1-![]()
=
.
看!经过拆项以后,原本很复杂的计算,一下子简单了!诺长的一个式子,最后的结果也很简单.“巧拆”带来“巧算”.
利用这样拆分的方法,你想想下面的计算题,能否做到又快又准呢?
(1)
+
+…+
(n为大于2的整数);
(2)
+
+…+
(n为正整数);
(3)
+
+…+
(n为正整数).
在你完成上面的计算后,可与同学们讨论一下,对于
+
+…+
(n为正整数)
能否还采用这样的拆项方法进行巧算?为什么?再与同学们探索一下,对于下面的式子,如何计算?
+
+
+…+
(n为正整数).
小华计算某整式减去ab-2bc+3ac时,误把减号看成了加号,所得答案是2bc-3ac+2ab,那么正确结果应为
A.-6bc+9ac
B.6bc-9ac
C.4bc-6ac+ab
D.3ab
(1)计算:
+(2π-1)0-
sin45°-
tan30°
(2)解方程:![]()
(3)一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1、2、3、4,小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球。
① 请你列出所有可能的结果;
② 求两次取得乒乓球的数字之积为奇数的概率。
(1)计算:
+(2π-1)0-
sin45°-
tan30°
(2)解方程:![]()
(3)一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1、2、3、4,小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球。
① 请你列出所有可能的结果;
② 求两次取得乒乓球的数字之积为奇数的概率。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com