∴a2n+2=2×2 n-1.∴a2n=2 n-2. 又a2n+a2n+1= a2n+2a2n+1=3a2n+1.∴数列{an}的前2007项的和为a1+( a2+ a3)+ ( a4+ a5)+ ( a6+ a7)+ -+ ( a2006+ a2007)= a1+(3a2+1)+ (3a4+1)+ (3a6+1)+ -+ (3a2006+1)= 1++ (3×22-5)+ (3×23-5)+ -+ (3×21003-5)= 1++ (3×22-5)+ (3×23-5)+ -+ (3×21003-5)= 3×(2+22+23+-+21003+1-5×1003=6×(21003-1)+1-5×1003=6×21003- 5020 .故选D. 查看更多

 

题目列表(包括答案和解析)

数列{an}中,a1=-27,an+1+an=3n-54(n∈N*).

(1)求证:数列{a2n}与{a2n-1}(n∈N*)都是等差数列;

(2)若数列{an}的前2n项和为T2n,设,且数列{bn}是等差数列,求非零常数c.

查看答案和解析>>

数列{an}{bn}满足a11a2r(r0)bnanan1,且{bn}是公比为q(q0)的等比数列,设cna2n1a2n(nN*)

(1){cn}的通项公式;

(2)r21921q,求数列{dn}的最大项和最小项的值.

 

查看答案和解析>>

已知数列{an}满足a1=1,a2,且[3+(-1)n]an+2=2an-2[(-1)n-1](n=1,2,3,…).

(1)求a3,a4,a5,a6的值并求{an}通项公式;

(2)令bn=a2n-1·a2n,记数列{bn}的前n项和为Tn,求证:Tn<3.

查看答案和解析>>

已知数列{an}满足a1=1,,且bn=a2n-2,n∈N*

(Ⅰ)求a2,a3,a4

(Ⅱ)求证:数列{bn}是以为公比的等比数列,并求其通项公式;

(Ⅲ)设,记Sn=C1+C2+…+Cn,求Sn

查看答案和解析>>

已知数列{an}满足a1=1,a2,且[3+(-1)n]an+2=2an-2[(-1)n-1](n=1,2,3,…)

(1)求a3,a4,a5,a6的值及数列{an}的通项公式;

(2)令bn=a2n-1·a2n,记数列{bn}的前n项和为Tn,求证Tn<3.

查看答案和解析>>


同步练习册答案