A., B., C., D.. 查看更多

 

题目列表(包括答案和解析)

.已知一次函数的图像经过点A(0,2)和点B(-1,1)。

1.求它的解析式;

2.在下面的直角坐标系中画出这条直线。

 

查看答案和解析>>

.(本题10分) 小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不

变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.且cosA=sinA′=

1.(1) 求此重物在水平方向移动的距离及在竖直方向移动的距离;

2.(2) 若这台吊车工作时吊杆最大水平旋转角度为120°,吊杆与水平线的倾角可以从30°转到60°,求吊车工作时,工作人员不能站立的区域的面积。

 

 

 

 

 

 

 

 

查看答案和解析>>

.画图题:(本题满分8分)

1.(1)在右面的三角形中(可以使用刻度尺、量角器、三角尺)

 

 

 

 

 

 


①画线段BC的中点D, 并连接AD;

②过点A画BC的垂线, 垂足为E;

③过点E画AB的平行线, 交AC于点F;

④指出图中表示点A到BC的距离的线段是:            .

 

2.(2)①由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图。

 

 

 

 

 

 

 

 

 


②用小立方体搭一几何体,使得它的俯视图和左视图与你在右图方格中所画的图一致,

则这样的几何体最少要_______个小立方块,最多要_______个小立方块。

 

查看答案和解析>>

.抛物线轴交于A,B两点,与轴交于C点,且A(,0)。

1.(1)求抛物线的解析式及顶点坐标D的坐标;

2.(2)判断的形状,证明你的结论;

3.(3)点M(m,0)是轴上的一个动点,当MC+MD的值最小时,求m的值。

 

查看答案和解析>>

.(本小题满分12分)

如图,AD为△ABC的中线,BE为△ABD的中线。

(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;

(2)在△BED中作BD边上的高;

(3)若△ABC的面积为40,BD=5,则△BDEBD边上的高为多少?

 

查看答案和解析>>

一.选择题:(本大题共15个题;每小题3分,共45分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

答案

B

C

A

C

D

A

B

A

D

B

A

B

D

A

A

二.填空题:(本大题共5小题;每小题3分,共15分。)

16.4       17. 36 ;        18. 20000;   19.

 

 

20.109

 

 

三.解答题:(本大题共6小题,共40分。解答应写出文字说明、证明过程或演算步骤。)

21.

解:(1)原式         ---1分

   ---2分

                 ---3分

(2)

解:去分母得2x-5=3(2x-1)

即2x-5=6x-3---1分

∴4x=-2

x= ---2分

当x=时,2x-1≠0

所以x=是原方程的解---3分

22.(本题6分)

(1)   C      ---2分

(2)没有考虑---4分

(3) ---6分

23.(本题7分)

解(1)当x30时,设函数关系式为y=kx+b

-------2分

解得

所以y=3x-30-------4分

(2)4月份上网20小时,应付上网费60元-------5分

(3) 由75=3x-30解得x=35,所以5月份上网35个小时. -------7分

24.(本题7分)

解:⑴设蓝球个数为个                -------1分

则由题意得         -------2分

            

答:蓝球有1个                   --------3分

 

 

                                                             --------4分

 

 

                                                             ---------5分

          ∴  两次摸到都是白球的概率 =                   

                                        =                    ----------7分

 

25.(本题6分)

证明:(1)∵AE=CF

∴AE+EF=CF+FE即AF=CE  --------- 1分

又ABCD是平行四边形,∴AD=CB,AD∥BC

∴∠DAF=∠BCE   ---------2分

在△ADF与△CBE中

      ---------3分

∴△ADF≌△CBE(SAS)---------4分

(2)∵△ADF≌△CBE

∴∠DFA=∠BEC ---------5分

∴DF∥EB---------6分

 

26.(本题8分)

(1)由已知可得∠AOE=60o  , AE=AE

由A′E//轴,得△OAE是直角三角形,

设A的坐标为(0,b)

AE=AE=,OE=2b

所以b=1,A、E的坐标分别是(0,1)与(,1) --------3分

(2)                  因为A、E在抛物线上,所以

所以,函数关系式为

与x轴的两个交点坐标分别是(,0)与(,0)--------6分

(3)                  不可能使△A′EF成为直角三角形。

∵∠FAE=∠FAE=60o,若△A′EF成为直角三角形,只能是∠AEF=90o或∠AFE=90o

若∠AEF=90o,利用对称性,则∠AEF=90o, A、E、A三点共线,O与A重合,与已知矛盾;

同理若∠AFE=90o也不可能

所以不能使△A′EF成为直角三角形。--------8分

 


同步练习册答案