(Ⅲ)证明:当时.存在正数.使得不等式.成立的最小正数.并求此时的最小正数.第二部分(总分40分.加试时间30分钟)注意事项:答卷前.请考生务必将自己的学校.姓名.考试号等信息填写在答卷密封线内.解答过程应写在答题卷的相应位置上.在其它地方答题无效.[选做题]在A.B.C.D四小题中只能选做2题.每题10分.共计20分.请在答题纸指定区域内作答.解答应写出文字说明.证明过程或演算步骤. 查看更多

 

题目列表(包括答案和解析)

定义在正实数集上的函数f(x)满足下列条件:
①存在常数a(0<a<1),使得f(a)=1;②对任意实数m,当x∈R+时,有f(xm)=mf(x).
(1)求证:对于任意正数x,y,f(xy)=f(x)+f(y);
(2)证明:f(x)在正实数集上单调递减;
(3)若不等式f(loga2(4-x)+2)-f(loga(4-x)8)≤3恒成立,求实数a的取值范围.

查看答案和解析>>

定义在正实数集上的函数f(x)满足下列条件:
①存在常数a(0<a<1),使得f(a)=1;②对任意实数m,当x∈R+时,有f(xm)=mf(x).
(1)求证:对于任意正数x,y,f(xy)=f(x)+f(y);
(2)证明:f(x)在正实数集上单调递减;
(3)若不等式f(loga2(4-x)+2)-f(loga(4-x)8)≤3恒成立,求实数a的取值范围.

查看答案和解析>>

定义在正实数集上的函数f(x)满足下列条件:
①存在常数a(0<a<1),使得f(a)=1;②对任意实数m,当x∈R+时,有f(xm)=mf(x).
(1)求证:对于任意正数x,y,f(xy)=f(x)+f(y);
(2)证明:f(x)在正实数集上单调递减;
(3)若不等式f(loga2(4-x)+2)-f(loga(4-x)8)≤3恒成立,求实数a的取值范围.

查看答案和解析>>

定义在正实数集上的函数f(x)满足下列条件:
①存在常数a(0<a<1),使得f(a)=1;②对任意实数m,当x∈R+时,有f(xm)=mf(x).
(1)求证:对于任意正数x,y,f(xy)=f(x)+f(y);
(2)证明:f(x)在正实数集上单调递减;
(3)若不等式f(loga2(4-x)+2)-f(loga(4-x)8)≤3恒成立,求实数a的取值范围.

查看答案和解析>>

已知函数,当时,函数取得极大值.

(1)求实数的值;

(2)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有

(3)已知正数,满足,求证:当时,对任意大于,且互不相等的实数,都有.

 

查看答案和解析>>

 

第 一 部 分

 

一、填空题:

1.        2.          3.1            4.16

5.                                 6.               7.64           8.

9.25                                 10.①④            11.        12.

13.                          14.

二、解答题:

15.解:(Ⅰ)依题意:

,解之得(舍去)   …………………7分

(Ⅱ),∴  ,  ………………………9分

∴    …………………………………11分

.      ……………………………………………14分

16.解:(Ⅰ)因为主视图和左视图均为矩形、所以该三棱柱为直三棱柱.

连BC1交B1C于O,则O为BC1的中点,连DO。

则在中,DO是中位线,

∴DO∥AC1.                ………………………………………………………4分

∵DO平面DCB1,AC1平面DCB1

∴AC1∥平面CDB1.           ………………………………………………………7分

(Ⅱ)由已知可知是直角三角形,

∵ 

∴  平面平面

∴  

∵  

∴  平面

平面

∴ 

17.解:(Ⅰ)由题意知:

一般地: ,…4分

∴  )。……………………………………7分

(Ⅱ)2008年诺贝尔奖发奖后基金总额为:

 ,…………………………………………10分

2009年度诺贝尔奖各项奖金额为万美元, ………12分

与150万美元相比少了约14万美元。     …………………………………………14分

答:新闻 “2009年度诺贝尔奖各项奖金高达150万美元”不真,是假新闻。……15分

18.解:(Ⅰ)圆轴交点坐标为,

,故,    …………………………………………2分

所以

椭圆方程是:               …………………………………………5分

(Ⅱ)设直线轴的交点是,依题意

,

,

,

,

 

(Ⅲ)直线的方程是,…………………………………………………6分

圆D的圆心是,半径是,……………………………………………8分

设MN与PD相交于,则是MN的中点,且PM⊥MD,

……10分

当且仅当最小时,有最小值,

最小值即是点到直线的距离是,…………………12分

所以的最小值是。  ……………………………15分

 

19.解:(Ⅰ)点的坐标依次为,…,

,…,           ……………………………2分

…,

共线;则

, ……………………………4分

所以数列是等比数列。          ……………………………………………6分

(Ⅱ)依题意

两式作差,则有:,   ………………………8分

,故,   ……………………………………………10分

即数列是公差为的等差数列;此数列的前三项依次为

,可得

,或,或。           ………………………………………12分

数列的通项公式是,或,或。    ………14分

知,时,不合题意;

时,不合题意;

时,

所以,数列的通项公式是。  ……………………………………16分

 

20.解:(Ⅰ)函数定义域

,    ……………………………………………4分

(Ⅱ),由(Ⅰ)

单调递增,

所以

,也就是

所以,存在值使得对一个,方程都有唯一解。………10分

(Ⅲ)

以下证明,对的数及数,不等式不成立。

反之,由,亦即成立,

因为

,这是不可能的。这说明是满足条件的最小正数。

这样不等式恒成立,

恒成立,

∴  ,最小正数=4 。……………………16分

 

 第二部分(加试部分)

21.(A)解:AD2=AE?AB,AB=4,EB=3      ……………………………………4分

△ADE∽△ACO,                ……………………………………………8分

CD=3                         ……………………………………………10分

(B)解:(Ⅰ)

所以点作用下的点的坐标是。…………………………5分

(Ⅱ)

是变换后图像上任一点,与之对应的变换前的点是

也就是,即

所以,所求曲线的方程是。……………………………………………10分

(C)解:由已知圆的半径为,………4分

又圆的圆心坐标为,所以圆过极点,

所以,圆的极坐标方程是。……………………………………………10分

(D)证明:

            ……………………………………6分

=2-

<2                              ……………………………………10分

 

 

 

22.解:(Ⅰ)∵,∴

∴切线l的方程为,即.……………………………………………4分

(Ⅱ)令=0,则.令=0,则x=1.

 ∴A=.………………10分

23.解:(Ⅰ)记“该生在前两次测试中至少有一次通过”的事件为事件A,则

P(A)=

答:该生在前两次测试中至少有一次通过的概率为。 …………………………4分

(Ⅱ)参加测试次数的可能取值为2,3,4,

      

    ,

      ,    ……………………………………………7分

        故的分布列为:

2

3

4

     ……………………………………………10分

 

 

 


同步练习册答案