题目列表(包括答案和解析)
函数f (x)=
在点x=1和x=2处的极限值都为0,而在点x=-2处不连续,则x· f(x)<0的解集是( )
A.(-2,0)∪(1,2) B.(-2,2)
C.(-∞,-2)∪(1,2) D.(-2,0)∪(2,+∞)
如图,在三棱锥
中,平面
平面
,
,
,
,
为
中点.(Ⅰ)求点B到平面
的距离;(Ⅱ)求二面角
的余弦值.
![]()
【解析】第一问中利用因为
,
为
中点,所以![]()
而平面
平面
,所以
平面
,再由题设条件知道可以分别以
、
、
为
,
,
轴建立直角坐标系得
,
,
,
,
,
,
故平面
的法向量
而
,故点B到平面
的距离![]()
第二问中,由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
解:(Ⅰ)因为
,
为
中点,所以![]()
而平面
平面
,所以
平面
,
再由题设条件知道可以分别以
、
、
为
,
,
轴建立直角坐标系,得
,
,
,
,
,
,故平面
的法向量![]()
而
,故点B到平面
的距离![]()
(Ⅱ)由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
已知函数 f(x)=
在[1,+∞)上为减函数,求实数a的取值范围.
【解析】本试题考查了导数在研究函数中的运用。根据函数f(x)=
在[1,+∞)上为减函数,可知导函数在给定区间恒小于等于零,f ′(x)≤0在[1,+∞)上恒成立,lna≥1-lnx在[1,+∞)上恒成立.然后利用φ(x)=1-lnx,φ(x)max=1,从而得到a≥e
f ′(x)=
=
,因为 f(x)在[1,+∞)上为减函数,故 f ′(x)≤0在[1,+∞)上恒成立,即lna≥1-lnx在[1,+∞)上恒成立.设φ(x)=1-lnx,φ(x)max=1,故lna≥1,a≥e,
函数f (x)=
在点x=1和x=2处的极限值都为0,而在点x=-2处不连续,则x· f(x)<0的解集是( )
| A.(-2,0)∪(1,2) | B.(-2,2) |
| C.(-∞,-2)∪(1,2) | D.(-2,0)∪(2,+∞) |
3
| ||
| 2 |
| 3 |
| 2 |
| ||
| 8 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com