的中点. 查看更多

 

题目列表(包括答案和解析)

中心在原点,焦点在x轴上的椭圆,率心率e=
2
2
,此椭圆与直线3x-3y+2
3
=0
交于A、B两点,且OA⊥OB(其中O为坐标原点).
(1)求椭圆方程;
(2)若M是椭圆上任意一点,F1、F2为椭圆的两个焦点,求∠F1MF2的取值范围.

查看答案和解析>>

精英家教网中国跳水运动员进行10 m跳台跳水训练时,身体(看成一点)在空中的运动路线为如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10
2
3
m,入水处距池边的距离为4 m,同时,运动员在距水面高度为5 m或5 m以上时,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.
(1)求这条抛物线的解析式.
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3
3
5
m,问此次跳水会不会失误?并通过计算说明理由.
(3)要使此次跳水不至于失误,该运动员按(1)中抛物线运行,且运动员在空中调整好入水姿势时,距池边的水平距离至多应为多少?

查看答案和解析>>

中心在原点,对称轴为坐标轴的双曲线的渐近线方程为y=±
2
2
x
,且双曲线过点P(2,1),则双曲线的方程为
 

查看答案和解析>>

中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为
2
,则双曲线方程为
 

查看答案和解析>>

中心在坐标原点,一个焦点为(5,0),且以直线y=±
34
x
为渐近线的双曲线方程为
 

查看答案和解析>>

         天津精通高考复读学校数学教研组组长  么世涛

一、选择题 :1-4, BBBB ;5-8,DABD。

提示:1.

2.

3.用代替

4.

5.,

6.

7.略

8.     

二、填空题:9.60;  10. 15:10:20   ;  11.;  12.

13.0.74  ; 14. ①、;②、圆;③.

提示: 9.

10.

11.

12.

13.

14.略

 

三、解答题

15. 解:(1).    

  (2)设抽取件产品作检验,则,  

    ,得:,即

   故至少应抽取8件产品才能满足题意.  

16. 解:由题意得,原式可化为,

   

故原式=.

17. 解:(1)显然,连接,∵

.由已知,∴.

 ∵

.

 ∴.        

 (2)     

当且仅当时,等号成立.此时,即的中点.于是由,知平面是其交线,则过

 ∴就是与平面所成的角.由已知得

 ∴, .      

(3) 设三棱锥的内切球半径为,则

 ∴.     

18. (1)    

(2) ∵

∴当时,      

∴当时,  

,,,.

的最大值为中的最大者.

∴ 当时,有最大值为

19.(1)解:∵函数的图象过原点,

.      

又函数的图象关于点成中心对称,

.

(2)解:由题意有  即

 即,即.

 ∴数列{}是以1为首项,1为公差的等差数列.

 ∴,即. ∴.

  ∴

(3)证明:当时,   

 故       

20. (1)解:∵,又

    ∴.             又∵     

    ,且

.        

(2)解:由猜想

    (3)证明:用数学归纳法证明:

    ①当时,,猜想正确;

    ②假设时,猜想正确,即

1°若为正奇数,则为正偶数,为正整数,

   

   2°若为正偶数,则为正整数,

,又,且

所以

即当时,猜想也正确          

   

由①,②可知,成立.     

(二)

一、1-4,AABB,5-8,CDCB;

提示: 1.  即   

2.   即

3.   即,也就是

4.先确定是哪两个人的编号与座位号一致,有种情况,如编号为1的人坐1号座位,且编号为2的人坐2号座位有以下情形:

人的编号

1

2

3

4

5

座位号

1

2

5

3

4

 

人的编号

1

2

3

4

5

座位号

1

2

4

5

3

 

                                                 

 

 

所以,符合条件的共有10×2=20种。

5. ,又,所以

,且,所以

6.略

7.略

8. 密文shxc中的s对应的数字为19,按照变换公式:

,原文对应的数字是12,对应的字母是

密文shxc中的h对应的数字为8,按照变换公式:

,原文对应的数字是15,对应的字母是

二、9.; 10.2;11.-48; 12. ; 13、5; 14、①3,②,③

提示:

9. 

10. 数列是首相为,公差为的等差数列,于是

  又,所以

11. 特殊值法。取通径,则

12.因,所以同解于

所以

13.略 。

 

14、(1)如图:∵

∴∠1=∠2=∠3=∠P+∠PFD          

=∠FEO+∠EFO

∴∠FEO=∠P,可证△OEF∽△DPF

即有,又根据相交弦定理DF?EF=BF?AF

可推出,从而

∴PF=3

(2) ∵PFQF,  ∴  ∴

(3)略。

三、15.解:(1)  依题知,得  

文本框: 子曰:三人行,必有我师焉:择其善者而从之,其不善者而改之。精通内部学员使用么老师答疑电话
13702071025
 所以

(2) 由(1)得

    

∴            

的值域为

 

16.解:设飞机A能安全飞行的概率为,飞机B能安全飞行的概率为,则

  所以

时,

时,

时,

故当时,飞机A安全;当时,飞机A与飞机B一样安全;当时,飞机B安全。

 

17.(1) 证明:以D为坐标原点,DA所在的直线x

轴,建立空间直角坐标系如图。

,则

,所以

                    即  ,也就是

,所以 ,即

(2)解:方法1、找出二面角,再计算。

 

方法2、由(1)得:(当且仅当取等号)

分别为的中点,于是

,所以

是平面的一个法向量,则

  也就是

易知是平面的一个法向量,

                   

18.(1) 证明:依题知得:

整理,得

 所以   即 

故 数列是等差数列。

(2) 由(1)得   即 ()

  所以

 =

=

 

19.解:(1) 依题知得

欲使函数是增函数,仅须

同步练习册答案