(2)由条件得 . - ---------------9分 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)如图9所示,流程图给出了无穷整数数列满足的条件,,且当k=5时,输出的S=;当k=10时,输出的S=

(1)试求数列的通项公式;(2)是否存在最小的正数M使得对一切正整数n都成立,若存在,求出M的值;若不存在,请说明理由。                                                         

第22题图   图9

查看答案和解析>>

已知点),过点作抛物线的切线,切点分别为(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;

(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,

求圆面积的最小值.

【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。

中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。

(3)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值

(Ⅰ)由可得,.  ------1分

∵直线与曲线相切,且过点,∴,即

,或, --------------------3分

同理可得:,或----------------4分

,∴. -----------------5分

(Ⅱ)由(Ⅰ)知,,,则的斜率

∴直线的方程为:,又

,即. -----------------7分

∵点到直线的距离即为圆的半径,即,--------------8分

故圆的面积为. --------------------9分

(Ⅲ)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,    ………10分

当且仅当,即时取等号.

故圆面积的最小值

 

查看答案和解析>>

某工厂制造A、B两种产品,制造产品A每吨需用煤9吨,电力4千瓦,3个工作日;制造产品B每吨需用煤5吨,电力5千瓦,10个工作日.已知制造产品A和B每吨分别获利7千元和12千元.现在该厂由于条件限制,只有煤360吨,电力200千瓦,工作日300个可以利用.问A、B两种产品各应生产多少吨才能获得最大利润?最大利润是多少?

查看答案和解析>>

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

7、9、10班同学做乙题,其他班同学任选一题,若两题都做,则以较少得分计入总分.

(甲)已知f(x)=ax-ln(-x),x∈[-e,0),,其中e=2.718 28…是自然对数的底数,a∈R.

(1)若a=-1,求f(x)的极值;

(2)求证:在(1)的条件下,

(3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.

(乙)定义在(0,+∞)上的函数,其中e=2.718 28…是自然对数的底数,a∈R.

   (1)若函数f(x)在点x=1处连续,求a的值;

(2)若函数f(x)为(0,1)上的单调函数,求实数a的取值范围;并判断此时函数f(x)在(0,+∞)上是否为单调函数;

(3)当x∈(0,1)时,记g(x)=lnf(x)+x2ax. 试证明:对,当n≥2时,有

查看答案和解析>>


同步练习册答案