题目列表(包括答案和解析)
如图,已知直线
(
)与抛物线
:
和圆
:
都相切,
是
的焦点.
(Ⅰ)求
与
的值;
(Ⅱ)设
是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
、
为邻边作平行四边形
,证明:点
在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点
所在的定直线为
, 直线
与
轴交点为
,连接
交抛物线
于
、
两点,求△
的面积
的取值范围.
![]()
【解析】第一问中利用圆
:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即
,解得
(
舍去)
设
与抛物线的相切点为
,又
,得
,
.
代入直线方程得:
,∴
所以
,![]()
第二问中,由(Ⅰ)知抛物线
方程为
,焦点
. ………………(2分)
设
,由(Ⅰ)知以
为切点的切线
的方程为
.
令
,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形
∴
因为
是定点,所以点
在定直线![]()
第三问中,设直线
,代入
得
结合韦达定理得到。
解:(Ⅰ)由已知,圆
:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即
,解得
(
舍去). …………………(2分)
设
与抛物线的相切点为
,又
,得
,
.
代入直线方程得:
,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知抛物线
方程为
,焦点
. ………………(2分)
设
,由(Ⅰ)知以
为切点的切线
的方程为
.
令
,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形,
∴
因为
是定点,所以点
在定直线
上.…(2分)
(Ⅲ)设直线
,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面积
范围是![]()
(本小题满分14分)甲、乙两间商店购进同一种商品的价格均为每件30元,销售价均为每件50元.根据前5年的有关资料统计,甲商店这种商品的年需求量
服从以下分布:
|
| 10 | 20 | 30 | 40 | 50 |
|
| 0.15 | 0.20 | 0.25 | 0.30 | 0.10 |
乙商店这种商品的年需求量
服从二项分布
.
若这种商品在一年内没有售完,则甲商店在一年后以每件25元的价格处理;乙商店一年后剩下的这种商品第1件按25元的价格处理,第2件按24元的价格处理,第3件按23元的价格处理,依此类推.今年甲、乙两间商店同时购进这种商品40件,根据前5年的销售情况,请你预测哪间商店的期望利润较大?
(本小题满分14分)
由函数
确定数列
,
,若函数
的反函数
能确定数列
,
,则称数列
是数列
的“反数列”。
(1)若函数
确定数列
的反数列为
,求
的通项公式;
(2)对(1)中
,不等式
对任意的正整数
恒成立,求实数
的取值范围;
(3)设
,若数列
的反数列为
,
与
的公共项组成的数列为
, 求数列
前
项和
。
(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)
卫生部门对某大学的4个学生食堂进行食品卫生检查(简称检查).若检查不合格,则必须整改,若整改后经复查不合格则强行关闭该食堂.设每个食堂检查是否合格是相互独立的,且每个食堂整改前检查合格的概率为
,整改后检查合格的概率是
.计算(结果用小数表示,精确到
)
(Ⅰ)恰有一个食堂必须整改的概率;
(Ⅱ)至少关闭一个食堂的概率.
解:(Ⅰ)设
:![]()
,其半焦距为![]()
.则
:
.
由条件知
,得
.
的右准线方程为
,即
.
的准线方程为
.
由条件知
, 所以
,故
,
.
从而
:
,
:
.
(Ⅱ)由题设知
:
,设
,
,
,
.
由
,得
,所以
.
而
,由条件
,得
.
由(Ⅰ)得
,
.从而,
:
,即
.
由
,得
.所以
,
.
故
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com