题目列表(包括答案和解析)
设
的一个极值点;
(I)求a与b的关系式(用a表示b),并求
的单调区间;
(II)设
成立,求a的取值范围.
| x | 2 |
| e | 3-x |
| a | 2 |
| 25 |
| 4 |
| e | x |
| 33 | 4 |
| 学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 数 学 | 1.3 | 12.3 | 25.7 | 36.7 | 50.3 | 67.7 | 49.0 | 52.0 | 40.0 | 34.3 |
| 物 理 | 2.3 | 9.7 | 31.0 | 22.3 | 40.0 | 58.0 | 39.0 | 60.7 | 63.3 | 42.7 |
| 学生序号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数 学 | 78.3 | 50.0 | 65.7 | 66.3 | 68.0 | 95.0 | 90.7 | 87.7 | 103.7 | 86.7 |
| 物 理 | 49.7 | 46.7 | 83.3 | 59.7 | 50.0 | 101.3 | 76.7 | 86.0 | 99.7 | 99.0 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
1―5 BCCCD 6―10 ACBBA 11―
13.
3 14.
15. 2 16. 
17.解:(1)因为
所以
即
因为三角形ABC的外接圆半径为1,由正弦定理,得
于是
即
因为
所以
故三角形ABC是直角三角形
因为
,
所以
,故
(2)
设
则
因为
故
在
上单调递减函数.
所以
所以实数的取值范围是
18.解:(1)3名志愿者恰好连续3天参加社区服务工作的概率为
(2)随机变量
的分布列为:

0
1
2
3
P




19.解:(1)
正方形ABCD,

又二面角
是直二面角




又
ABEF是矩形,G是EF的中点,
又

而
故平面
(2)由(1)知平面
且交于GC,在平面BGC内作
垂足为H,则
是BG与平面AGC所成的角.
在
中,
,
.
即BG与平面AGC所成的角为
(3)由(2)知
作
垂足为O,连接HO,则
为二面角
的平面角
在
ABG中, 
在
中, 
在
中, 

20.解:(1)
①当
时,
故
在
上为减,
在
上为增,在
上为减.
②当
时,
故
在
上为减,
在
上为增,在
上为减.
(2)
的取值范围是
21.解:设
,
与
联立的

(Ⅰ)


(Ⅱ)(1)过点A的切线:
过点B的切线:
联立得点
所以点N在定直线
上
(2)
联立:
可得 

直线MN:
在
轴的截距为
,
直线MN在
轴上截距的取值范围是
22.解:(Ⅰ)
(1)
时,
时不等式成立
(2)假设
时不等式成立,即

时不等式成立
由(1)(2)可知,对
都有
(Ⅱ)(1)

是递减数列
(2)



湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com