题目列表(包括答案和解析)
若方程x2+(m-2)x-m+5=0的两个根都大于2,求实数m的取值范围.
阅读下面的解法,回答提出的问题.
解:第一步,令判别式Δ=(m-2)2-4(-m+5)≥0,
解得m≥4或m≤-4;
第二步,设两根为x1,x2,由x1>2,x2>2得
,所以
.
所以m<-2.
第三步,由
得m≤-4.
第四步,由第三步得出结论.
当m∈(-∞,-4]时,此方程两根均大于2.
但当取m=-6检验知,方程x2-8x+11=0两根为x=4±
,其中4-
<2.
试问:产生错误的原因是什么?
设
为实数,首项为
,公差为
的等差数列
的前n项和为
,满足![]()
(1)若
,求
及
;
(2)求d的取值范围.
【解析】本试题主要考查了数列的求和的运用以及通项公式的运用。第一问中,利用
和已知的
,得到结论
第二问中,利用首项和公差表示
,则方程是一个有解的方程,因此判别式大于等于零,因此得到d的范围。
解:(1)因为设
为实数,首项为
,公差为
的等差数列
的前n项和为
,满足![]()
所以![]()
(2)因为![]()
得到关于首项的一个二次方程,则方程必定有解,结合判别式求解得到![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com