因此所求实数的范围为: 查看更多

 

题目列表(包括答案和解析)

若方程x2+(m-2)x-m+5=0的两个根都大于2,求实数m的取值范围.

阅读下面的解法,回答提出的问题.

解:第一步,令判别式Δ=(m-2)2-4(-m+5)≥0,

解得m≥4或m≤-4;

第二步,设两根为x1,x2,由x1>2,x2>2得

,所以

所以m<-2.

第三步,由得m≤-4.

第四步,由第三步得出结论.

当m∈(-∞,-4]时,此方程两根均大于2.

但当取m=-6检验知,方程x2-8x+11=0两根为x=4±,其中4-<2.

试问:产生错误的原因是什么?

查看答案和解析>>

为实数,首项为,公差为的等差数列的前n项和为,满足

(1)若,求;

(2)求d的取值范围.

【解析】本试题主要考查了数列的求和的运用以及通项公式的运用。第一问中,利用和已知的,得到结论

第二问中,利用首项和公差表示,则方程是一个有解的方程,因此判别式大于等于零,因此得到d的范围。

解:(1)因为设为实数,首项为,公差为的等差数列的前n项和为,满足

所以

(2)因为

得到关于首项的一个二次方程,则方程必定有解,结合判别式求解得到

 

查看答案和解析>>


同步练习册答案