题目列表(包括答案和解析)
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(理)对于数列
,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数
,公比为正整数
的无穷等比数列
的子数列问题. 为此,他任取了其中三项
.
(1) 若
成等比数列,求
之间满足的等量关系;
(2) 他猜想:“在上述数列
中存在一个子数列
是等差数列”,为此,他研究了
与
的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;
(3) 他又想:在首项为正整数
,公差为正整数
的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(理)对于数列
,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数
,公比为正整数
的无穷等比数列
的子数列问题. 为此,他任取了其中三项
.
(1) 若
成等比数列,求
之间满足的等量关系;
(2) 他猜想:“在上述数列
中存在一个子数列
是等差数列”,为此,他研究了
与
的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;
(3) 他又想:在首项为正整数
,公差为正整数
的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.
某高中为调查了解学生体能状况,按年级采用分层抽样的方法从所有学生中抽取360人进行体育达标测试.该校高二年级共有学生1200人,高一、高二、高三三个年级的人数依次成等差数列.
(Ⅰ)若从高一年级中抽取了100人,求从高三年级中抽取了多少人?
(Ⅱ)体育测试共有三个项目:分别是100米跑、立定跳远、掷实心球.已知被抽到的某同学每个项目的测试合格与不合格是等可能的,求该同学三项测试中有且只有两项合格的概率.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
从数列
中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列
的一个子数列.
设数列
是一个首项为
、公差为![]()
的无穷等差数列.
(1)若
,
,
成等比数列,求其公比
.
(2)若
,从数列
中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为
的无穷等比子数列,请说明理由.
(3)若
,从数列
中取出第1项、第![]()
项(设
)作为一个等比数列的第1项、第2项,试问当且仅当
为何值时,该数列为
的无穷等比子数列,请说明理由.
一. 填空题(每题4分,共48分)
1. {0}; 2. 四; 3. 12; 4. 0; 5. 4; 6. 理
、文7; 7. 理
; 12.
(或
).
二.选择题(每题4分,共16分)
13.D; 14.B; 15.C; 16.理B、文B.
三. 解答题. 17.(本题满分12分)解:由已知得
(3分)
∴
, ∴
(6分)
∴
又
,即
,∴
(9分)
∴
的面积S=
.
(12分)
18.(本题满分12分)解:∵
,∴
(5分)
∵
,欲使
是纯虚数,
而
=
(7分)
∴
, 即
(11分)
∴当
时,
是纯虚数.
(12分)
19.(本题满分14分,第1小题满分9分,第2小题满分5分)
解:(1)依题意设
,则
,
(2分)
(4分) 而
,
∴
,即
, (6分) ∴
(7分)
从而
.
(9分)
(2)
平面
,
∴直线
到平面
的距离即点
到平面
的距离
(2分)
也就是
的斜边
上的高,为
.
(5分)
20.(本题满分14分,第1小题满分8分,第2小题满分6分)
解:(1)不正确.
(2分)
没有考虑到
还可以小于
.
(3分)
正确解答如下:
令
,则
,
当
时,
,即
(5分)
当
时,
,即
(7分)
∴
或
,即
既无最大值,也无最小值.
(8分)
(2)(理)对于函数
,令
①当
时,
有最小值,
,
(9分)
当
时,
,即
,当
时,即
∴
或
,即
既无最大值,也无最小值.
(10分)
②当
时,
有最小值,
,
此时,
,∴
,即
,
既无最大值,也无最小值 .(11分)
③当
时,
有最小值,
,即
(12分)
∴
,即
,
∴当
时,
有最大值
,没有最小值.
(13分)
∴当
时,
既无最大值,也无最小值。
当
时,
有最大值
,此时
;没有最小值.
(14分)
(文)∵
, ∴
(12分)
∴函数
的最大值为
(当
时)而无最小值. (14分)
21.(本满分16分,第1、2小题满分各4分,第3小题满分8分)
解:(1)
(4分)
(2)由
解得
(7分)
所以第
个月更换刀具.
(8分)
(3)第
个月产生的利润是:
(9分)
个月的总利润:
(11分)
个月的平均利润:
(13分)
由
且
在第7个月更换刀具,可使这7个月的平均利润
最大(13.21万元) (14分)此时刀具厚度为
(mm)
(16分)
22.(本题满分18分,第1、2小题满分各4分,第3小题满分10分)
解:(1)
(4分)
(2)各点的横坐标为:
(8分)
(3)过
作斜率为
的直线
交抛物线于另一点
,
(9分)
则一般性的结论可以是:
点
的相邻横坐标之和构成以
为首项和公比的等比数列(或:点
无限趋向于某一定点,且其横(纵)坐标之差成等比数列;或:
无限趋向于某一定点,且其横(纵)坐标之差成等比数列,等)(12分)
证明:设过点
作斜率为
的直线交抛物线于点
由
得
或
;
点
的横坐标为
,则
(14分)
于是
两式相减得:
(16分)


=

故点
无限逼近于点
同理
无限逼近于点
(18分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com