方法二:以A为原点.以所在直线分 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥O-ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC中点,以A为原点,建立适当的空间直角坐标系,利用空间向量解答以下问题
(1)证明:直线BD⊥OC
(2)证明:直线MN∥平面OCD
(3)求异面直线AB与OC所成角的余弦值.

查看答案和解析>>

精英家教网正方体ABCD-A1B1C1D1的棱长为2,且AC与BD交于点O,E为棱DD1中点,以A为原点,建立空间直角坐标系A-xyz,如图所示.
(Ⅰ)求证:B1O⊥平面EAC;
(Ⅱ)若点F在EA上且B1F⊥AE,试求点F的坐标;
(Ⅲ)求二面角B1-EA-C的正弦值.

查看答案和解析>>

已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=
12
AB=1
,N为AB上一点,AB=4AN,M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.

查看答案和解析>>

长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=4,E是CC1中点,以A为原点建立空间直角坐标系,如图,则点E的

坐标为

A.(1,1,2)B.(2,2,2)C.(0,2,2)D.(2,0,2)

 

 

 

 

 

 

 

 

 

查看答案和解析>>

如图,已知四棱锥的底面ABCD为正方形,平面ABCD,E、F分别是BC,PC的中点,

(1)求证:平面

(2)求二面角的大小.

【解析】第一问利用线面垂直的判定定理和建立空间直角坐标系得到法向量来表示二面角的。

第二问中,以A为原点,如图所示建立直角坐标系

,,

设平面FAE法向量为,则

 

查看答案和解析>>


同步练习册答案