故.且. 查看更多

 

题目列表(包括答案和解析)

中,是三角形的三内角,是三内角对应的三边,已知成等差数列,成等比数列

(Ⅰ)求角的大小;

(Ⅱ)若,求的值.

【解析】第一问中利用依题意,故

第二问中,由题意又由余弦定理知

,得到,所以,从而得到结论。

(1)依题意,故……………………6分

(2)由题意又由余弦定理知

…………………………9分

   故

           代入

 

查看答案和解析>>

已知m>1,直线,椭圆C:分别为椭圆C的左、右焦点.

(Ⅰ)当直线过右焦点时,求直线的方程;

(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[

【解析】第一问中因为直线经过点,0),所以,得.又因为m>1,所以,故直线的方程为

第二问中设,由,消去x,得

则由,知<8,且有

由题意知O为的中点.由可知从而,设M是GH的中点,则M().

由题意可知,2|MO|<|GH|,得到范围

 

查看答案和解析>>

在数列中,,当时, 

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列的前项和.

【解析】本试题主要考查了数列的通项公式的求和 综合运用。第一问中 ,利用,得到,故故为以1为首项,公差为2的等差数列. 从而     

第二问中,

,从而可得

为以1为首项,公差为2的等差数列.

从而      ……………………6分

(2)……………………9分

 

查看答案和解析>>

已知x,y∈R+,且x+y=2,求
1
x
+
2
y
的最小值;给出如下解法:由x+y=2得2≥2
xy
①,即
1
xy
≥1
②,又
1
x
+
2
y
≥2
2
xy
③,由②③可得
1
x
+
2
y
≥2
2
,故所求最小值为2
2
.请判断上述解答是否正确
不正确
不正确
,理由
①和③不等式不能同时取等号.
①和③不等式不能同时取等号.

查看答案和解析>>

有两排座位,前排10个座位,后排11个座位,现安排2人就座,如果因故后排中间的3个座位不能坐,并且这2人不能左右相邻,那么不同排法的种数是
276
276

查看答案和解析>>


同步练习册答案