9.若函数.则当之间大小关系为A. B.C. D.与或a有关.不能确定 查看更多

 

题目列表(包括答案和解析)

若函数,则当之间大小关系为(  )

A.                  B.

C.                  D.与a有关,不能确定

查看答案和解析>>

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

某科研小组对热能与电能的转化和燃煤每分钟的添加量之间的关系进行科学研究,在对某发电厂A号机组的跟踪调研中发现:若该机组每分钟燃煤的添加量设计标准为a吨,在正常状态下,通过自动传输带给该机组每分钟添加燃煤x吨,理论上可以共生产电能x3-x+10千瓦,而由于实际添加量x与设计标准a存在误差,实际上会导致电能损耗2|x-a|千瓦,最后实际产生的电能为f(x)千瓦.
(1)试写出f(x)关于x的函数表达式;当0<a<1时,求f(x)的极大值.
(2)该科研小组决定调整设计标准a,控制添加量x,实现对最终生产的电能f(x)的有效控制的科学实验,若某次实验中a∈[
1
2
,1),x∈[
1
2
3
2
]
(单位:吨),用电高峰期间,要求该厂的输出电能为每分钟不得低于9千瓦,否则供电不正常.试问这次实验能否实现这个目标?请说明理由.

查看答案和解析>>

某科研小组对热能与电能的转化和燃煤每分钟的添加量之间的关系进行科学研究,在对某发电厂A号机组的跟踪调研中发现:若该机组每分钟燃煤的添加量设计标准为a吨,在正常状态下,通过自动传输带给该机组每分钟添加燃煤x吨,理论上可以共生产电能x3-x+10千瓦,而由于实际添加量x与设计标准a存在误差,实际上会导致电能损耗2|x-a|千瓦,最后实际产生的电能为f(x)千瓦.
(1)试写出f(x)关于x的函数表达式;当0<a<1时,求f(x)的极大值.
(2)该科研小组决定调整设计标准a,控制添加量x,实现对最终生产的电能f(x)的有效控制的科学实验,若某次实验中数学公式(单位:吨),用电高峰期间,要求该厂的输出电能为每分钟不得低于9千瓦,否则供电不正常.试问这次实验能否实现这个目标?请说明理由.

查看答案和解析>>

某科研小组对热能与电能的转化和燃煤每分钟的添加量之间的关系进行科学研究,在对某发电厂A号机组的跟踪调研中发现:若该机组每分钟燃煤的添加量设计标准为a吨,在正常状态下,通过自动传输带给该机组每分钟添加燃煤x吨,理论上可以共生产电能x3-x+10千瓦,而由于实际添加量x与设计标准a存在误差,实际上会导致电能损耗2|x-a|千瓦,最后实际产生的电能为f(x)千瓦.
(1)试写出f(x)关于x的函数表达式;当0<a<1时,求f(x)的极大值.
(2)该科研小组决定调整设计标准a,控制添加量x,实现对最终生产的电能f(x)的有效控制的科学实验,若某次实验中(单位:吨),用电高峰期间,要求该厂的输出电能为每分钟不得低于9千瓦,否则供电不正常.试问这次实验能否实现这个目标?请说明理由.

查看答案和解析>>

武汉市教育科学研究院命制                                             2009.4.16

一、选择题

1.B       2.C       3.D      4.A      5.B       6.C       7.A      8.A      9.B       10.D

二、填空题

11.7             12.(2,3)         13.          14.        15.

三、解答题

16.解:(1)由

                  

                  

由知:,于是可知

得.………………………………………………………(6分)

(2)由及

而在上单调递增

可知满足:时单调递增

于是在定义域上的单调递增区间为.………………(12分)

17.解:(1)摸球3次就停止,说明前三次分别都摸到了红球,

则……………………………………………………………(5分)

(2)随机变量的取值为0,1,2,3.

则,

.

随机变量的分布列是

0

1

2

3

P

的数学期望为:

.………………………(12分)

18.解:(1)在四棱锥中,底面,则

若,则和面内相交的两直线均垂直

面,故.

在底面的平行四边形中,令

在中,.

于是

在中,由可知:

求得或

依题意,于是有.……………………………………………(6分)

(2)过点作,连结

.

又,面

由三垂线定理知:为所求二面角的平面角

过点

易知

在中

故所求二面角的大小为45.………………………………………………(12分)

19.解:(1)

故轨迹为以A、B为焦点的双曲线的右支.

设其方程为:

.

故轨迹方程为.…………………………………………(6分)

(2)由

方程有两个正根.

设,由条件知.

整理得,即

由(1)知,即显然成立.

由(2)、(3)知

而.

.

故的取值范围为……………………(13分)

20.解:(1)由,

求导数得到:

,故在有唯一的极值点

,且知

故上有两个不等实根需满足:

故所求m的取值范围为.………………………………………(6分)

(2)又有两个实根

两式相减得到:

于是

,故

要证:,只需证:

只需证:

令,则

只需证明:在上恒成立.

又则

于是由可知.故知

上为增函数,则

从而可知,即(*)式成立,从而原不等式得证.……………

……………………………………………………………(13分)

21.解:(1)经过计算可知:

.

求得.…………………………………………(4分)

(2)由条件可知:.…………①

类似地有:.…………②

①-②有:.

即:.

因此:

即:故

所以:.…………………………………………(8分)

(3)假设存在正数,使得数列的每一项均为整数.

则由(2)可知:…………③

由,及可知.

当时,为整数,利用,结合③式,反复递推,可知,,,,…均为整数.

当时,③变为………④

我们用数学归纳法证明为偶数,为整数

时,结论显然成立,假设时结论成立,这时为偶数,为整数,故为偶数,为整数,所以时,命题成立.

故数列是整数列.

综上所述,的取值集合是.………………………………………(13分)

 

 


同步练习册答案