17.袋中装有若干个质地均匀大小一致的红球和白球.白球数量是红球数量的两倍.每次从袋中摸出一个球然后放回.若累计3次摸到红球则停止摸球.否则继续摸球直至第5次摸球后结束.(1)求摸球3次就停止的事件发生的概率,(2)记摸到红球的次数为.求随机变量的分布列及其期望. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

       一个袋子内装有若干个黑球,3个白球,2个红球(所有的球除颜色外其它均相同),从中一次性任取2个球,每取得一个黑球得0分,每取一个白球得1分,每取一个红球得2分,用随机变量表示取2个球的总得分,已知得0分的概率为

   (Ⅰ)求袋子内黑球的个数;

   (Ⅱ)求的分布列与期望。

查看答案和解析>>

(本小题满分12分)
一个袋子内装有若干个黑球,个白球,个红球(所有的球除颜色外其它均相同),从中任取个球,每取得一个黑球得分,每取一个白球得分,每取一个红球得分,已知得分的概率为,用随机变量X表示取个球的总得分.
(Ⅰ)求袋子内黑球的个数;
(Ⅱ)求X的分布列.

查看答案和解析>>

武汉市教育科学研究院命制                                             2009.4.16

一、选择题

1.B       2.C       3.D      4.A      5.B       6.C       7.A      8.A      9.B       10.D

二、填空题

11.7             12.(2,3)         13.          14.        15.

三、解答题

16.解:(1)由

                  

                  

由知:,于是可知

得.………………………………………………………(6分)

(2)由及

而在上单调递增

可知满足:时单调递增

于是在定义域上的单调递增区间为.………………(12分)

17.解:(1)摸球3次就停止,说明前三次分别都摸到了红球,

则……………………………………………………………(5分)

(2)随机变量的取值为0,1,2,3.

则,

.

随机变量的分布列是

0

1

2

3

P

的数学期望为:

.………………………(12分)

18.解:(1)在四棱锥中,底面,则

若,则和面内相交的两直线均垂直

面,故.

在底面的平行四边形中,令

在中,.

于是

在中,由可知:

求得或

依题意,于是有.……………………………………………(6分)

(2)过点作,连结

.

又,面

由三垂线定理知:为所求二面角的平面角

过点

易知

在中

故所求二面角的大小为45.………………………………………………(12分)

19.解:(1)

故轨迹为以A、B为焦点的双曲线的右支.

设其方程为:

.

故轨迹方程为.…………………………………………(6分)

(2)由

方程有两个正根.

设,由条件知.

整理得,即

由(1)知,即显然成立.

由(2)、(3)知

而.

.

故的取值范围为……………………(13分)

20.解:(1)由,

求导数得到:

,故在有唯一的极值点

,且知

故上有两个不等实根需满足:

故所求m的取值范围为.………………………………………(6分)

(2)又有两个实根

两式相减得到:

于是

,故

要证:,只需证:

只需证:

令,则

只需证明:在上恒成立.

又则

于是由可知.故知

上为增函数,则

从而可知,即(*)式成立,从而原不等式得证.……………

……………………………………………………………(13分)

21.解:(1)经过计算可知:

.

求得.…………………………………………(4分)

(2)由条件可知:.…………①

类似地有:.…………②

①-②有:.

即:.

因此:

即:故

所以:.…………………………………………(8分)

(3)假设存在正数,使得数列的每一项均为整数.

则由(2)可知:…………③

由,及可知.

当时,为整数,利用,结合③式,反复递推,可知,,,,…均为整数.

当时,③变为………④

我们用数学归纳法证明为偶数,为整数

时,结论显然成立,假设时结论成立,这时为偶数,为整数,故为偶数,为整数,所以时,命题成立.

故数列是整数列.

综上所述,的取值集合是.………………………………………(13分)

 

 


同步练习册答案