设有编号为1.2.3.4.5的五个球和编号为1.2.3.4.5的五个盒子.现将这五个球放入5个盒子内.(1) 只有一个盒子空着.共有多少种投放方法?(2) 没有一个盒子空着.但球的编号与盒子编号不全相同.有多少种投放方法? 查看更多

 

题目列表(包括答案和解析)

(本小题12分)设有数列,若以为系数的二次方程都有根,且满足

(1)求证:数列是等比数列。

(2)求数列的通项以及前n项和

 

查看答案和解析>>

(本大题14分)

已知,且·+,

(1)将函数的表达式化为的形式;

(2)求函数的最小正周期和单调递增区间;

(3)当的最小值为0,求此时函数的最大值, 并求出相应的的值。

查看答案和解析>>

精英家教网已知数列{an}的前n 项和Sn是关于n(n∈N*)的二次函数,其图象经过三点A,B,C(如图所示).
(1)(本小题7分) 求Sn的解析式;
(2)(本小题8分)求数列{an}的通项公式,并证明数列{an}是等差数列.

查看答案和解析>>

必做题,本小题10分.解答时应写出文字说明、证明过程或演算步骤.
已知抛物线y2=4x的焦点为F,直线l过点M(4,0).
(1)若点F到直线l的距离为
3
,求直线l的斜率;
(2)设A,B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点的横坐标为定值.(6分)

查看答案和解析>>

(本小题10分)已知,且

(Ⅰ)求的值;

(Ⅱ)求的值.

 

查看答案和解析>>

一、填空题

1. ;2. 110;3. ;4. ①③;5. ③;6. 10.5亿元;

7. 81; 8. ;

9. 一条边的平方等于其它两条边平方和的三角形是直角三角形;

10. ;

11. ;12. ;13. ;14. 60

二、解答题

15. 解:(1)由可得m=1;                         …………4分

(2)由可得m=0;                                …………8分

(3)由可得m=2;                                …………12分

综上:当m=1时,复数是0;当m=1时,复数是纯虚数;当m=2,复数是.

                                                                 …………14分

16. 解:(Ⅰ);              …………4分

(Ⅱ)是以4为其一个周期的周期函数.                        …………6分

∵,   …………10分

∴,                  …………12分

所以是周期函数,其中一个周期为4.                          …………14分

17. 解:(1)只有一个盒子空着,则有且只有一个盒子中投放两个球,另外3只盒子中各投放一个球,先将球分成2,1,1,1的四组,共有种分法,           …………4分

再投放到五个盒子的其中四个盒子中,共有种放法,所以满足条件的投放方法共有=1200(种);                                                …………8分

(2)五个球投放到五个盒子中,每个盒子中只有一个球,共有种投放方法,

而球的编号与盒子编号全相同的情况只有一种,所以球的编号与盒子编号不全相同的投放方法共有=119(种).                                       …………14分

18. 证明:记=…(,>1),       …………2分

(1)当=2时,>,不等式成立;             …………6分

(2)假设=(,≥2)时,不等式成立,              …………8分

即=…>,

则当=+1时,有=+>+=

                           >=                 …………12分

∴当=+1时,不等式也成立.                                …………14分

    综合(1),(2)知,原不等式对任意的(>1)都成立.     …………16分

19. 解:(Ⅰ)由=10,=20,=5.2,

可得,                                     …………4分

∴年推销金额与工作年限之间的相关系数约为0.98.               …………6分

(Ⅱ) 由(Ⅰ)知,>,

 ∴可以认为年推销金额与工作年限之间具有较强的线性相关关系.    …………8分

设所求的线性回归方程为,则.           …………10分

∴年推销金额关于工作年限的线性回归方程为.       …………12分

(Ⅲ) 由(Ⅱ) 可知,当时, = 0.5×11+ 0.4 = 5.9万元,

∴可以估计第6名推销员的年推销金额为5.9万元.                   …………16分

20. 解:(1)设(),                            …………2分

则集合{?}={?},

故表示以(0,3)为圆心,2为半径的圆;                         …………6分

设(),()且,…………8分

则                                                     …………10分

将代入得,

故表示以(-6,0)为圆心,4为半径的圆;                       …………12分

(2)表示分别在圆上的两个动点间的距离,又圆心距>2+4,

故最大值为6+3,最小值为3-6.                    …………16分

 

 


同步练习册答案