题目列表(包括答案和解析)
已知
,
求
和
的值.
【解析】利用三角恒等变换得到函数值,
由于
得
![]()
解析: 由
得
![]()
已知在
中,
,
,
,解这个三角形;
【解析】本试题主要考查了正弦定理的运用。由正弦定理得到:![]()
,然后又
![]()
又
再又
得到c。
解:由正弦定理得到:![]()
![]()
又
……4分
又
……8分
又
![]()
求由抛物线
与直线
及
所围成图形的面积.
【解析】首先利用已知函数和抛物线作图,然后确定交点坐标,然后利用定积分表示出面积为
,所以得到
,由此得到结论为![]()
解:设所求图形面积为
,则
![]()
=
.即所求图形面积为
.
![]()
已知指数函数
,当
时,有
,解关于x的不等式![]()
【解析】本试题主要考查了指数函数,对数函数性质的运用。首先利用指数函数
,当
时,有
,,得到
,从而
等价于
,联立不等式组可以解得![]()
解:∵
在
时,有
,
∴
。
于是由
,得
,
解得
,
∴ 不等式的解集为
。
已知
,(其中
)
⑴求
及
;
⑵试比较
与
的大小,并说明理由.
【解析】第一问中取
,则
;
…………1分
对等式两边求导,得![]()
取
,则
得到结论
第二问中,要比较
与
的大小,即比较:
与
的大小,归纳猜想可得结论当
时,
;
当
时,
;
当
时,
;
猜想:当
时,
运用数学归纳法证明即可。
解:⑴取
,则
;
…………1分
对等式两边求导,得
,
取
,则
。 …………4分
⑵要比较
与
的大小,即比较:
与
的大小,
当
时,
;
当
时,
;
当
时,
;
…………6分
猜想:当
时,
,下面用数学归纳法证明:
由上述过程可知,
时结论成立,
假设当
时结论成立,即
,
当
时,![]()
而![]()
∴![]()
即
时结论也成立,
∴当
时,
成立。
…………11分
综上得,当
时,
;
当
时,
;
当
时,
1. 构造向量
,
,所以
,
.由数量积的性质
,得
,即
的最大值为2.
2. ∵
,令
得
,所以
,当
时,
,当
时,
,所以当
时,
.
3.∵
,∴
,
,又
,∴
,则
,所以周期
.作出
在
上的图象知:若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,∴
;若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,
∴
.
4. 不等式
(
)表示的区域是如图所示的菱形的内部,
∵
,
当
,点
到点
的距离最大,此时
的最大值为
;
当
,点
到点
的距离最大,此时
的最大值为3.
5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有
种情况.抽到5 和14的两人在同一组,有两种情况:
(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有
种情况;
(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有
种情况.
于是,抽到5 和14 两张卡片的两人在同一组的概率为
.
6. ∵
,∴
,
设
,
,则
.
作出该不等式组表示的平面区域(图中的阴影部分
).
令
,则
,它表示斜率为
的一组平行直线,易知,当它经过点
时,
取得最小值.
解方程组
,得
,∴
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com