例8.过的焦点作直线交抛物线与.两点.若与的长分别是..则( ) 查看更多

 

题目列表(包括答案和解析)

的焦点作直线交抛物线与两点,若的长分别是,则                                            (     )

A、       B、      C、        D、

查看答案和解析>>

的焦点作直线交抛物线与两点,若的长分别是,则                                            (     )

A、       B、      C、        D、

查看答案和解析>>

抛物线C:y2=2px(p>0)的焦点为F,抛物线C上点M的横坐标为2,且|MF|=3.
(1)求抛物线C的方程;
(2)过焦点F作两条相互垂直的直线,分别与抛物线C交于M、N和P、Q四点,求四边形MPNQ面积的最小值.

查看答案和解析>>

过抛物线y=ax2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则
1
p
+
1
q
等于(  )
A、2a
B、
1
2a
C、4a
D、
4
a

查看答案和解析>>

过抛物线y2=4x的焦点作直线与其交于M、N两点,作平行四边形MONP,则P点的轨迹方程为(  )
A、y2=4(x-2)B、y2=-4(x+2)C、y2=4(x+2)D、y2=x-1

查看答案和解析>>

1. 由函数6ec8aac122bd4f6e知,当时,,且6ec8aac122bd4f6e,则它的反函数过点(3,4),故选A.  

 

2.∵,∴,则,即.,选B.

3. 由平行四边形法则,

,当P为中点时,取得最小值.选B.

4. 设是椭圆的一个焦点,它是椭圆三个顶点,,构成的三角形的垂心(如图).由,即,∴,得,解得,选A.

 

5. 设正方形边长为,则.在由正弦定理得,又在由余弦定理得,于是,选C.

6. 在底面上的射影知,为斜线在平面上的射影,∵,由三垂线定理得,∵,所以直线与直线重合,选A.

 

7. 过A作抛物线的准线的垂线AA1交准线A1,  过B作椭圆的右准线的垂线交右准线于则有:BN=e|BB1|=2-xB,AN=|AA1|=xA+1,周长=|AN|+|AB|+|BN|=xA+1+(xB-xA)+(2-xB)=3+xB

由可得两曲线的交点x=,xB∈(,2),

∴3+xB∈(,4),即△ANB周长取值范围是(,4),选B.

 

8. 先将3,5两个奇数排好,有种排法,再将4,6两个偶数插入3,5中,有种排法,最后将1,2 当成一个整体插入5个空位中,所以这样的六位数的个数为,选B.


同步练习册答案