题目列表(包括答案和解析)
![]()
A.计算小于100的奇数的连乘积
B.计算从1开始的连续奇数的连乘积
C.从1开始的连续奇数的连乘积,当乘积大于100时,计算奇数的个数
D.计算1×3×5×…×n≥100时的最小的n值
已知数列
是各项均不为0的等差数列,公差为d,
为其前n项和,且满足
,
.数列
满足
,
,
为数列
的前n项和.
(1)求数列
的通项公式
和数列
的前n项和
;
(2)若对任意的
,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数![]()
,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
【解析】第一问利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
时,
满足
,![]()
,
![]()
第二问,①当n为偶数时,要使不等式
恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式
恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
第三问
,
若
成等比数列,则
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
时,
满足
,![]()
,
.
(2)①当n为偶数时,要使不等式
恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式
恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
综合①、②可得
的取值范围是
.
(3)
,
若
成等比数列,则
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此时n=12.
因此,当且仅当m=2,
n=12时,数列
中的
成等比数列
| A.计算小于100的奇数的连乘积 |
| B.计算从1开始的连续奇数的连乘积 |
| C.从1开始的连续奇数的连乘积,当乘积大于100时,计算奇数的个数 |
| D.计算1×3×5×…×n≥100时的最小的n值 |
1. 由函数
知,当
时,
,且
,则它的反函数过点(3,4),故选A.
2.∵
,∴
,则
,即
,
.
,选B.
3. 由平行四边形法则,
,
∴
,
又
,
∴
,当P为
中点时,取得最小值
.选B.
4. 设
是椭圆的一个焦点,它是椭圆三个顶点
,
,
构成的三角形的垂心(如图).由
有
,即
,∴
,得
,解得
,选A.
5. 设正方形边长为
,
,则
,
.在
由正弦定理得
,又在
由余弦定理得
,于是
,
,选C.
6.
在底面
上的射影
知,
为斜线
在平面
上的射影,∵
,由三垂线定理得
,∵
,所以直线
与直线
重合,选A.
7. 过A作抛物线
的准线的垂线AA1交准线A1,
过B作椭圆的右准线的垂线
交右准线于
则有:BN=e|BB1|=2-xB,AN=|AA1|=xA+1,周长
=|AN|+|AB|+|BN|=xA+1+(xB-xA)+(2-xB)=3+xB,
由可得两曲线的交点x=,xB∈(,2),
∴3+xB∈(,4),即△ANB周长
取值范围是(,4),选B.
8. 先将3,5两个奇数排好,有
种排法,再将4,6两个偶数插入3,5中,有
种排法,最后将1,2 当成一个整体插入5个空位中,所以这样的六位数的个数为
,选B.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com