8.(2008年全国卷.理综.24)图8中滑块和小球的质量均为m.滑块可在水平放置的光滑固定导轨上自由滑动.小球与滑块上的悬点O由一不可伸长的轻绳相连.轻绳长为l.开始时.轻绳处于水平拉直状态.小球和滑块均静止.现将小球由静止释放.当小球到达最低点时.滑块刚好被一表面涂有粘性物质的固定挡板粘住.在极短的时间内速度减为零.小球继续向左摆动.当轻绳与竖直方向的夹角θ=60°时小球达到最高点.求(1)从滑块与挡板接触到速度刚好变为零的过程中.挡板阻力对滑块的冲量,(2)小球从释放到第一次到达最低点的过程中.绳的拉力对小球做功的大小. 图8 查看更多

 

题目列表(包括答案和解析)

2008年 (全国I  理科综合)18.三个原子核X、Y、Z,X核放出一个正电子后变为Y核,Y核与质子发生核反应后生成Z核并放出一个个氦(42He),则下面说法正确的是

A.X核比Z核多一个原子

B.X核比Z核少一个中子

C.X核的质量数比Z核质量数大3

D.X核与Z核的总电荷是Y核电荷的2倍

查看答案和解析>>

精英家教网(1)我国的“探月工程”计划于2015年宇航员登上月球.“探月工程”总指挥部向全国中学生征集可在月球完成的航天科技小实验.小军同学设想:宇航员登月前记录贴近月球表面绕月球做匀速圆周运动的飞船飞行一周的时间T,登上月球后,以初速度v0竖直向上抛出一小球,测出小球从抛出到落回所需的时间t,并认为贴近月球表面绕月球做匀速圆周运动的飞船,其向心力近似等于飞船在月球表面时的重力,由此来近似计算月球的半径R0.你认为小军能根据他的设想计算出月球的半径吗?若能,请帮小军算出月球的半径R0;若不能,请说明理由.
(2)为了落实“绿色奥运”的理念,2008年北京在各比赛场馆之间使用了新型节能环保电动车.这种环保电动车总质量m=3×103kg,驱动电机线圈内阻r=1Ω.当它在水平路面上以v=36km/h的速度匀速行驶时,若驱动电机的输入电流I=40A,电压U=250V,求汽车此时所受阻力(不计其它机械损耗).

查看答案和解析>>

为什么说神舟七号飞船宇航员翟志刚19分35秒在太空行走9165公里?
已知神舟七号飞船的飞行高度为340km,飞行周期为80min,地球半径为6400km.
据媒体报道:2008年9月27日,神舟七号飞船运行第29圈,经地面指挥部决策,确认由航天员翟志刚、刘伯明执行空间出舱活动任务.经多次状态检查及确认,在神舟七号飞船进入远望三号船测控区时,北京航天飞行控制中心于16时34分向航天员下达出舱指令.16时35分,翟志刚经过努力开启轨道舱舱门,穿着我国研制的“飞天”舱外航天服以头先出的方式实施出舱活动.北京飞控中心指控大厅前方大屏幕显示出从神舟七号飞船上传回的画面,翟志刚面向安装在飞船推进舱的摄像机挥手致意,向全国人民问好,向全世界人民问好.接着,他接过刘伯明递上的五星红旗挥舞摇动.随后,他朝轨道舱固体润滑材料试验样品安装处缓缓移动,取回样品,递给航天员刘伯明.按照预定路线,翟志刚在舱外进行了出舱活动.在完成各项任务后,翟志刚以脚先进的方式返回轨道舱,关闭轨道舱舱门,完成了舱门检漏工作.根据航天员报告情况和对航天员生理数据判读表明,翟志刚、刘伯明身体状况良好.整个出舱活动持续时间25分23秒,其中,在太空行走19分35秒,总里程9165公里,空间出舱活动获得成功(附图).精英家教网
有人不禁要问,世界跑得最快的人(100米世界冠军),跑100米尚且用9.6秒多,也就是说,按这个速度,他19分35秒,才跑12公里,为什么说翟志刚能“跑”这么快呢?

查看答案和解析>>

为迎接2008年北京奥运会,从东直门到首都机场T3航站楼,修建了一条轨道交通线,全长27.3km,设计运行时间为16min,这条轨道交通线是目前全国最快的地铁线路(如图所示).在设计这条轨道交通线的过程中,科技人员需要进行一些测试.某次测试中列车在平直轨道上由静止开始到最大速度v所用时间为t,设在运动过程中列车所受牵引力和列车所受的阻力均不变,则列车的加速度大小为
v
t
v
t
;在此段时间t内列车通过的路程为
vt
2
vt
2

查看答案和解析>>

2008年中国(芜湖)科普产品博览交易会于l2月12日隆重开幕.这是中国科协决定由我市永久性举办该会展后的首次科博会.开幕当天,全国中等城市规模最大的科技馆--芜湖科技馆开门迎客.在科技馆中的水平地面上有一个质量为4kg的物体,在与水平方向成37°角的斜向上的拉力F作用下,从静止开始运动,经过一段时间后撤去拉力F,又经过一段时间后,物体停止运动.工作人员用先进的仪器测量数据并用电脑描绘出物体全过程的v-t图象如图所示,很快计算出了地面的动摩擦因数.请你利用学过的知识求解:物体与地面的动摩擦因数为多大?拉力F为多大?

查看答案和解析>>

                                   高考真题

1.【解析】设物体的质量为m,t0时刻受盒子碰撞获得速度v,根据动量守恒定律                

3t0时刻物体与盒子右壁碰撞使盒子速度又变为v0,说明碰撞是弹性碰撞            联立以上两式解得  m=M                      

(也可通过图象分析得出v0=v,结合动量守恒,得出正确结果)

【答案】m=M

2.【解析】由动量守恒定律和能量守恒定律得:      

          解得:

      炮弹射出后做平抛,有:

      解得目标A距炮口的水平距离为:

     同理,目标B距炮口的水平距离为:

                     

              解得:

【答案】

3.【解析】(1)P1滑到最低点速度为,由机械能守恒定律有:  

    解得:

P1、P2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为

      

解得:    =5m/s

P2向右滑动时,假设P1保持不动,对P2有:(向左)

对P1、M有: 

此时对P1有:,所以假设成立。

(2)P2滑到C点速度为,由   得

P1、P2碰撞到P2滑到C点时,设P1、M速度为v,对动量守恒定律:

     解得:

对P1、P2、M为系统:

代入数值得:

滑板碰后,P1向右滑行距离:

P2向左滑行距离:

所以P1、P2静止后距离:

【答案】(1)(2)

 

4.【解析】(1)P1经t1时间与P2碰撞,则     

P1、P2碰撞,设碰后P2速度为v2,由动量守恒:

解得(水平向左)    (水平向右)

碰撞后小球P1向左运动的最大距离:      又:

解得:

所需时间:

(2)设P1、P2碰撞后又经时间在OB区间内再次发生碰撞,且P1受电场力不变,由运动学公式,以水平向右为正:   则: 

解得:  (故P1受电场力不变)

对P2分析:  

所以假设成立,两球能在OB区间内再次发生碰撞。

5.【解析】从两小球碰撞后到它们再次相遇,小球A和B的速度大小保持不变。根据它们通过的路程,可知小球B和小球A在碰撞后的速度大小之比为4┱1。

设碰撞后小球A和B 的速度分别为,在碰撞过程中动量守恒,碰撞前后动能相等,有

                     ………… ①

               ………… ②

联立以上两式再由,可解出 m1∶m2=2∶1

【答案】2∶1

6.【解析】⑴碰后B上摆过程机械能守恒,可得

⑵两球发生弹性碰撞过程系统动量守恒,机械能守恒。设与B碰前瞬间A的速度是v0,有2mv0=2mvA+mvB,可得vA= v0/3,vB= 4v0/3,因此,同时也得到

⑶先由A平抛的初速度vA和水平位移L/2,求得下落高度恰好是L。即两球碰撞点到水平面的高度是L。A离开弹簧时的初动能可以认为就等于弹性力对A做的功。A离开弹簧上升的全过程用机械能守恒:,解得W=

【答案】(1)   (2)W=                  

7.【解析】此题是单个质点碰撞的多过程问题,既可以用动能定理与动量定理求解,也可以用力与运动关系与动量求解.设小物块从高为h处由静止开始沿斜面向下运动,到达斜面底端时速度为v。                                  

由动能定理得          ①

以沿斜面向上为动量的正方向。按动量定理,碰撞过程中挡板给小物块的冲量

②                                         

设碰撞后小物块所能达到的最大高度为h’,则 ③                             

同理,有   ⑤                                     

式中,v’为小物块再次到达斜面底端时的速度,I’为再次碰撞过程中挡板给小物块的冲量。由①②③④⑤式得       ⑥式中   ⑦                                         

由此可知,小物块前4次与挡板碰撞所获得的冲量成等比级数,首项为

  ⑧总冲量为

   由  ( ⑩得

      代入数据得     N?s     

【答案】  N?s

8.【解析】此题开始的绳连的系统,后粘合变成了小球单个质点的运动问题(1)对系统,设小球在最低点时速度大小为v1,此时滑块的速度大小为v2,滑块与挡板接触前由系统的机械能守恒定律:mgl = mv12 +mv22

由系统的水平方向动量守恒定律:mv1 = mv2

对滑块与挡板接触到速度刚好变为零的过程中,挡板阻力对滑块的冲量为:I = mv2

联立①②③解得I = m 方向向左④

(2)小球释放到第一次到达最低点的过程中,设绳的拉力对小球做功的大小为W,对小球由动能定理:mgl+W = mv12

联立①②⑤解得:W =-mgl,即绳的拉力对小球做负功,大小为mgl 。

【答案】(1)I = m 方向向左;(2)mgl

9.【解析】(1)设B在绳被拉断后瞬间的速度为,到达C点时的速度为,有

   (1)    (2)

代入数据得         (3)

(2)设弹簧恢复到自然长度时B的速度为,取水平向右为正方向,有

    (4)      (5)

代入数据得     其大小为4NS  (6)

(3)设绳断后A的速度为,取水平向右为正方向,有

 (7)   代入数据得

【答案】(1)  (2)4NS     (3)

10.【解析】设摆球A、B的质量分别为,摆长为l,B球的初始高度为h1,碰撞前B球的速度为vB.在不考虑摆线质量的情况下,根据题意及机械能守恒定律得

                                                  ①

                                                    ②

设碰撞前、后两摆球的总动量的大小分别为P1、P2。有

P1=mBv                                                            ③

联立①②③式得

                                           ④

同理可得

                                     ⑤

联立④⑤式得                                        

代入已知条件得         由此可以推出≤4%                                                      

所以,此实验在规定的范围内验证了动量守恒定律。

【答案】≤4%  

名校试题

1.【解析】(1)M静止时,设弹簧压缩量为l0,则Mg=kl0     

速度最大时,M、m组成的系统加速度为零,则

(M+m)g-k(l0+l1)=0     ②-

联立①②解得:k=50N/m   ③                                     

[或:因M初位置和速度最大时都是平衡状态,故mg=kl1,解得:k=50N/m]

(2)m下落h过程中,mgh=mv02     ④-

m冲击M过程中, m v0=(M+m)v       ⑤-

所求过程的弹性势能的增加量:ΔE=(M+m)g(l1+l2)+ (M+m)v2

联立④⑤⑥解得:ΔE=0.66J   ⑦

(用弹性势能公式计算的结果为ΔE=0.65J也算正确)

【答案】ΔE=0.66J

2.【解析】①根据图象可知,物体C与物体A相碰前的速度为:v1=6m/s

       相碰后的速度为:v2=2m/s   根据定量守恒定律得:

       解得:m3=2.0kg

       ②规定向左的方向为正方向,在第5.0s和第15s末物块A的速度分别为:

       v2=2m/s,v3=-2m/s 所以物块A的动量变化为:

       即在5.0s到15s的时间内物块A动量变化的大小为:16kg?m/s 方向向右

【答案】(1)m3=2.0kg   (2)16kg?m/s 方向向右

3.【解析】(1)设第一颗子弹进入靶盒A后,子弹与靶盒的共内速度为

  根据碰撞过程系统动量守恒,有:  

  设A离开O点的最大距离为,由动能定理有: 

  解得:  

(2)根据题意,A在的恒力F的作用返回O点时第二颗子弹正好打入,由于A的动量与第二颗子弹动量大小相同,方向相反,故第二颗子弹打入后,A将静止在O点。设第三颗子弹打入A后,它们的共同速度为,由系统动量守恒得: (2分)

  设A从离开O点到又回到O点所经历的时间为t,取碰后A运动的方向为正方向,由动量定理得: 解得:   

(3)从第(2)问的计算可以看出,第1、3、5、……(2n+1)颗子弹打入A后,A运动时间均为 故总时间  

【答案】(1)  (2)   (3)

4.【解析】对A、B、C整体,从C以v0滑上木块到最终B、C达到共同速度V,

其动量守恒既:m v0=2mV1+3mv     1.8=2V1+3×0.4        V1=0.3m/s          

对A、B、C整体,从C以v0滑上木块到C以V2刚离开长木板,

此时A、B具有共同的速度V1。其动量守恒即:m v0=mV2+4mv1      

1.8=V2+4×0.3         V2=0.6m/s  

 【答案】 (1)V1=0.3m/s  (2)  V2=0.6m/s    

5.【解析】(1)B与A碰撞前速度由动能定理   

 得         

      B与A碰撞,由动量守恒定律        

      得               

      碰后到物块A、B运动至速度减为零,弹簧的最大弹性势能

                     

(2)设撤去F后,A、B一起回到O点时的速度为,由机械能守恒得

                             

   返回至O点时,A、B开始分离,B在滑动摩擦力作用下向左作匀减速直线运动,设物块B最终离O点最大距离为x

 由动能定理得:                       

 【答案】(1)  (2)

6.【解析】设小车初速度为V0,A与车相互作用摩擦力为f,      

第一次碰后A与小车相对静止时速为  V1,由动量守恒,

得 mAV0-mBV0=(mA+mB)V1

   由能量守恒,得mAV02mBV02=f?L+(mA+mB)V12…        图14

    多次碰撞后,A停在车右端,系统初动能全部转化为内能,由能量守恒,得

    fL=(mA+mB)V02

    联系以上三式,解得:(mA+mB)2=4(mA-mB)2  ∴mA=3mB

【答案】mA=3mB

 

 

7.【解析】(1)当B离开墙壁时,A的速度为v0,由机械能守恒有

            mv02=E                         解得 v0=    

(2)以后运动中,当弹簧弹性势能最大时,弹簧达到最大程度时,A、B速度相等,设为v,由动量守恒有  2mv=mv0        解得               v=  

(3)根据机械能守恒,最大弹性势能为

             Ep=mv022mv2=E        

【答案】(1)v0=  (2)v=    (3)Ep=E

8.【解析】设子弹的质量为m,木块的质量为M,子弹射出枪口时的速度为v0

第一颗子弹射入木块时,动量守恒 

木块带着子弹做平抛运动   

第二颗子弹射入木块时,动量守恒 

木块带着两颗子弹做平抛运动   

联立以上各式解得   

【答案】

9.【解析】

车与缓冲器短时相撞过程根据动量守恒:           ②         2分

O到D过程               ③      

由①②③求得:                                   

(2)D到O过程                ④       

赛车从O点到停止运动              ⑤        

车整个过程克服摩擦力做功        ⑥      

由④⑤⑥求得:    

【答案】(1)      (2)  

10.【解析】(1)设所有物块都相对木板静止时的速度为 v,因木板与所有物块系统水平方向不受外力,动量守恒,应有:

m v+m?2 v+m?3 v+…+m?n v=(M + nm)v      1

              M = nm,                              2

解得:          v=(n+1)v,                                        6分

    (2)设第1号物块相对木板静止时的速度为v,取木板与物块1为系统一部分,第2 号物块到第n号物块为系统另一部分,则

      木板和物块1    △p =(M + m)v- m v

      2至n号物块    △p=(n-1)m?(v- v

由动量守恒定律: △p=△p

解得            v= v,                    3                 6分

(3)设第k号物块相对木板静止时的速度由v ,则第k号物块速度由k v减为v的过程中,序数在第k号物块后面的所有物块动量都减小m(k v- v),取木板与序号为1至K号以前的各物块为一部分,则 

△p=(M+km)v-(m v+m?2 v+…+mk v)=(n+k)m v-(k+1)m v

序号在第k以后的所有物块动量减少的总量为

     △p=(n-k)m(k v- v

由动量守恒得   △p=△p, 即

(n+k)m v-(k+1)m v= (n-k)m(k v- v),

解得        v=     

【答案】

11.【解析】(1)设地球质量为M0,在地球表面,有一质量为m的物体,

    设空间站质量为m′绕地球作匀速圆周运动时,

    联立解得,

  (2)因为探测器对喷射气体做功的功率恒为P,而单位时间内喷气质量为m,故在t时

    间内,据动能定理可求得喷出气体的速度为:

    另一方面探测器喷气过程中系统动量守恒,则:

&n