(Ⅱ)∵sinA=由=.得3=解得c=5. -10分∴=4+25-2×2×5×=13 . ∴. --13分 查看更多

 

题目列表(包括答案和解析)

设△ABC的内角ABC所对的边分别为abc,已知a=1,b=2,cosC=. (1)求△ABC的周长;       (2)求cos(AC)的值.

【解析】(1)借助余弦定理求出边c,直接求周长即可.(2)根据两角差的余弦公式需要求sinC,sinA,cosA,由正弦定理即可求出sinA,进而可求出cosA.sinC可由cosA求出,问题得解.

 

查看答案和解析>>

在△ABC中,a、b、c分别是角A、B、C的对边,cosB=.

⑴ 若cosA=-,求cosC的值;  ⑵ 若AC=,BC=5,求△ABC的面积.

【解析】第一问中sinB=, sinA=

cosC=cos(180°-A-B)=-cos(A+B)                =sinA.sinB-cosA·cosB

×-(-

第二问中,由-2AB×BC×cosB得 10=+25-8AB

解得AB=5或AB=3综合得△ABC的面积为

解:⑴ sinB=, sinA=,………………2分

∴cosC=cos(180°-A-B)=-cos(A+B)                  ……………………3分

=sinA.sinB-cosA·cosB                            ……………………4分

×-(-                   ……………………6分

⑵ 由-2AB×BC×cosB得 10=+25-8AB   ………………7分

解得AB=5或AB=3,                               ……………………9分

若AB=5,则S△ABCAB×BC×sinB=×5×5×    ………………10分

若AB=3,则S△ABCAB×BC×sinB=×5×3×……………………11分

综合得△ABC的面积为

 

查看答案和解析>>

在△ABC中,若sinA,cosB,求cosC.

 

查看答案和解析>>

(本小题满分14分)已知锐角中的三个内角分别为

(1)设·=·,求证:是等腰三角形;

(2)设向量=(2sinC, -), =(cos2C, 2cos2 -1), 且∥, 若sinA=,求sin(-B)的值.

 

 

查看答案和解析>>

在三角形ABC中,若sinA.=,则的值是(    )

A.           B.          C.      D. 

 

查看答案和解析>>


同步练习册答案