平面. 4分 查看更多

 

题目列表(包括答案和解析)

平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m′和n′,给出下列四个命题:
①m′⊥n′m⊥n;
②m⊥nm′⊥n′;
③m′与n′相交m与n相交或重合;
④m′与n′平行m与n平行或重合。
其中不正确的命题个数是
[     ]
A.1
B.2
C.3
D.4

查看答案和解析>>

在平面直角坐标系中,已知焦距为4的椭圆的左、右顶点分别为,椭圆的右焦点为,过作一条垂直于轴的直线与椭圆相交于,若线段的长为

(1)求椭圆的方程;

(2)设是直线上的点,直线与椭圆分别交于点,求证:直线必过轴上的一定点,并求出此定点的坐标;

 

查看答案和解析>>

在平面直角坐标系xoy中,已知定点A(-4,0),B(4,0),动点P与A、B连线低斜率之积为

(1)求点P的轨迹方程;

(2)设点P的轨迹与y轴负半轴交于点C,半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得弦长为

    (Ⅰ)求圆M的方程;

(Ⅱ)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如

果不存在,说明理由。

 

查看答案和解析>>

(14分)在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x

-4)2+(y-5)2=4.

(1)若点M∈⊙ C1,  点N∈⊙C2, 求|MN|的取值范围;

(2)若直线l过点A(4,0),且被圆C1截得的弦长为2 ,求直线l的方程;

(3)设P为平面上的点,满足:存在过点P的无数多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标。

 

查看答案和解析>>

(14分)在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x
-4)2+(y-5)2=4.
(1)若点M∈⊙ C1,  点N∈⊙C2,求|MN|的取值范围;
(2)若直线l过点A(4,0),且被圆C1截得的弦长为2 ,求直线l的方程;
(3)设P为平面上的点,满足:存在过点P的无数多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标。

查看答案和解析>>


同步练习册答案