题目列表(包括答案和解析)
(本小题满分12分)
如图,已知两个正方行ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点 。
(I)若平面ABCD ⊥平面DCEF,求直线MN与平面DCEF所成角的正值弦;
(II)用反证法证明:直线ME 与 BN 是两条异面直线。
![]()
(本小题满分12分)
如图,直三棱柱A1B1C1—ABC中,C1C=CB=CA=2,AC⊥CB.
D、E分别为棱C1C、B1C1的中点.
(1)求二面角B—A1D—A的平面角余弦值;
(2)在线段AC上是否存在一点F,使得EF⊥平面A1BD?
若存在,确定其位置并证明结论;若不存在,说明理由.
(本小题满分12分)
如图,平面
平面
,四边形
与
都是直角梯形,
![]()
![]()
![]()
,![]()
![]()
,
分别为
的中点(Ⅰ)证明:四边形
是平行四边形;
(Ⅱ)
四点是否共面?为什么?
(Ⅲ)设
,证明:平面
平面
;
(本小题满分12分)如图 ,半径
等于弦
,过
作
的切线
,取
,
交
于
,
交
于点
,则
和
的度数分别是多少?
(本小题满分12分)
如图,在直四棱柱ABCD-A
B
C
D
中,底面ABCD为等腰梯形,AB//CD,AB=4,BC=CD=2,AA
=2, E、E
分别是棱AD、AA
的中点。
![]()
(1)设F是棱AB的中点,证明:直线EE
//平面FCC
;
(2)证明:平面D1AC⊥平面BB1C1C。
一.选择题:
1~5 ABDBC 6~10 ABDDC 11~12 BA
二.填空题:
13. 14. 15. 16.
三.解答题:
17.解:(1) , ……1分
, ……2分
由 得
,
又 ,, ……5分
(2)由(1)知,,又C 为锐角,
……10分
18.(1)记事件为甲出子,事件为乙猜对甲出子,
则,为相互独立的事件,记乙赢得1子的事件为
记三次游戏中甲获胜一次的事件为,则一次游戏中甲获胜的事件为,
则
(2)记乙获胜的事件为,则
=
甲获胜的概率大。
则分别为的中点,连接,
.则四边形是平行四边形
分别为的中点,平面
平面
(2)过作,垂足为,连接
则面
就是直线与面所成的角.
设,则
,直线与面所成的角是。
(3)由(2)时,
则,所以
又由(2)面,则
为二面角的平面角
20.解(1)∵ 无解
直线l与的图像不相切。 5分
(2)由题意得;在x∈[-2,2]内恒成立
即: 设
∵ ∴g(x) 在x∈[-2,2]内单调递增
∴g(x)的最大值为 12分
21.解:(1)证明:
,即
是以2为公比的等比数列
(2)解:, ,
22.(1)设
,在线段的中垂线上
,又,则
又,
又
化简得即为的轨迹方程
(2)设直线
由
又
由得
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com