20. 已知函数.直线(1)求证:直线与的图像不相切,(2)若当x∈[-2,2]时.函数的图像在直线的下方.求c的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知函数=,在处取得极值2。

(1)求函数的解析式;

(2)满足什么条件时,区间为函数的单调增区间?

(3)若=图象上的任意一点,直线=的图象切于点,求直线的斜率的取值范围。

查看答案和解析>>

(本小题满分12分)
 已知函数,设
(Ⅰ)求的表达式,并直接写出的表达式;
(Ⅱ)设
若关于的函数在区间上的最小值为,求的值.

查看答案和解析>>

(本小题满分12分)

已知函数,曲线在点处的切线方程为.

(1)求函数的解析式;

(2)过点能作几条直线与曲线相切?说明理由.

 

查看答案和解析>>

(本小题满分12分)

已知函数

(Ⅰ)讨论函数的单调区间和极值点;

(Ⅱ)若函数有极值点,记过点与原点的直线斜率为。是否存在使?若存在,求出值;若不存在,请说明理由。

 

查看答案和解析>>

(本小题满分12分)

已知函数,其中.

(Ⅰ)求函数的单调区间;

(Ⅱ)若直线是曲线的切线,求实数的值;

(Ⅲ)设,求在区间上的最大值.(其中为自然对数的底数)

 

 

查看答案和解析>>

一.选择题:

1~5 ABDBC     6~10 ABDDC     11~12 BA

二.填空题:

13.     14.      15.     16.

三.解答题:

17.解:(1)  ,        ……1分

,                     ……2分

由 得

                       

又 ,,                    ……5分

(2)由(1)知,,又C 为锐角,

                           ……10分

18.(1)记事件为甲出子,事件为乙猜对甲出子,

则,为相互独立的事件,记乙赢得1子的事件为

记三次游戏中甲获胜一次的事件为,则一次游戏中甲获胜的事件为,

(2)记乙获胜的事件为,则

=

甲获胜的概率大。

19.(1)证明:过作,分别交与

则分别为的中点,连接,

.则四边形是平行四边形

分别为的中点,平面

平面

(2)过作,垂足为,连接

则面

就是直线与面所成的角.

设,则

,直线与面所成的角是。

(3)由(2)时,

则,所以

又由(2)面,则

为二面角的平面角         

20.解(1)∵   无解 

   直线l与的图像不相切。                5分

      (2)由题意得;在x∈[-2,2]内恒成立

        即:    设

      ∵   ∴g(x) 在x∈[-2,2]内单调递增

∴g(x)的最大值为            12分

21.解:(1)证明:

   ,即

是以2为公比的等比数列

(2)解:,  ,

   

             

22.(1)设

       ,在线段的中垂线上

      ,又,则

又,

化简得即为的轨迹方程

(2)设直线

由          

由得           

 

 

 

 


同步练习册答案