[解答](Ⅰ)f(x)的定义域为---------------- 查看更多

 

题目列表(包括答案和解析)

【例】已知fx)为R上的奇函数,且当x>0时,fx)=sin3x+2x2-1,求fx)的解析式

查看答案和解析>>

【04上海·理】若函数f(x)=a在[0,+∞)上为增函数,则实数a、b的取值范围是          

查看答案和解析>>

【04湖南文】若函数f(x)=x2+bx+c的图象的顶点在第四象限,则函数f /(x)的图象是

查看答案和解析>>

已知函数f(x)=x2-ax+b
(Ⅰ)【理科】若b=4时,f(x)≥0对x∈(0,4)恒成立,求a的范围;
【文科】若b=4时,f(x)≥0对x∈R恒成立,求a的范围;
(Ⅱ)若f(-1)≥0,f(0)≤0,f(2)≥0,求f(3)的范围.

查看答案和解析>>

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>


同步练习册答案