故当时.不存在满足该等式的正整数. 查看更多

 

题目列表(包括答案和解析)

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

下列命题中正确的是(   )

A、如果两条直线平行,则它们的斜率相等

B、如果两条直线垂直,则它们的斜率互为负倒数

C、如果两条直线的斜率之积为-1,则两条直线垂直

D、如果两条直线的斜率不存在,则该直线一定平行与y轴

 

查看答案和解析>>

曲线恰有3个不同的交点,则

A.                  B.0                   C.                 D.不存在满足上述条件的a

查看答案和解析>>

f:xy=2xAB的映射,已知集合B={0,1,2,3,4},则A满足(   )

A.A={1,2,4,8,16}

B.A={0,1,2,log23}

C.A{0,1,2,log23}

D.不存在满足条件的集合

查看答案和解析>>

设f:x→y=2x是A→B的映射,已知集合B={0,1,2,3,4},则A满足(  )

A.A={1,2,4,8,16}            B.A={0,1,2,log23}

C.A{0,1,2,log23}              D.不存在满足条件的集合

 

查看答案和解析>>


同步练习册答案