题目列表(包括答案和解析)
在空间四边形ABCD中,AD=BC=2,E、F分别是AB、CD的中点,EF=
,求AD与BC所成角的大小
(本题考查中位线法求异面二直线所成角)
如图,在四棱锥P-ABCD中,底面ABCD是矩形,
,BC=1,
,PD=CD=2.
(I)求异面直线PA与BC所成角的正切值;
(II)证明平面PDC⊥平面ABCD;
(III)求直线PB与平面ABCD所成角的正弦值。
![]()
【考点定位】本小题主要考查异面直线所成的角、平面与平面垂直、直线与平面所成的角等基础知识.,考查空间想象能力、运算求解能力和推理论证能力.
如图所示的长方体
中,底面
是边长为
的正方形,
为
与
的交点,
,
是线段
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求二面角
的大小.
【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用
,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得证明
(3)因为∴
为面
的法向量.∵
,
,
∴
为平面
的法向量.∴利用法向量的夹角公式,
,
∴
与
的夹角为
,即二面角
的大小为
.
方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接
,则点
、
,
![]()
∴
,又点
,
,∴![]()
∴
,且
与
不共线,∴
.
又
平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵
,![]()
∴
,
,即
,
,
又
,∴
平面
. ………8分
(Ⅲ)∵
,
,∴
平面
,
∴
为面
的法向量.∵
,
,
∴
为平面
的法向量.∴
,
∴
与
的夹角为
,即二面角
的大小为![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com