题目列表(包括答案和解析)
|
(本小题满分16分)
某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次品率
与日产量
(件)之间大体满足关系:
![]()
(注:次品率
,如
表示每生产10件产品,约有1件为次品.其余为合格品.)
已知每生产一件合格的仪器可以盈利
元,但每生产一件次品将亏损
元,故厂方希望定出合适的日产量,
(1)试将生产这种仪器每天的盈利额
(元)表示为日产量
(件)的函数;
(2)当日产量
为多少时,可获得最大利润?
若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:
|
分组 |
频数 |
频率 |
|
[-3, -2) |
|
0.10 |
|
[-2, -1) |
8 |
|
|
(1,2] |
|
0.50 |
|
(2,3] |
10 |
|
|
(3,4] |
|
|
|
合计 |
50 |
1.00 |
(Ⅰ)将上面表格中缺少的数据填在答题卡的相应位置;
(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;
(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。
【解析】(Ⅰ)
|
分组 |
频数 |
频率 |
|
[-3, -2) |
5 |
0.10 |
|
[-2, -1) |
8 |
0.16 |
|
(1,2] |
25 |
0.50 |
|
(2,3] |
10 |
0.2 |
|
(3,4] |
2 |
0.04 |
|
合计 |
50 |
1.00 |
(Ⅱ)根据频率分布表可知,落在区间(1,3]内频数为35,故所求概率为0.7.
(Ⅲ)由题可知不合格的概率为
0.01,故可求得这批产品总共有2000,故合格的产品有1980件。
(1)求f(x)的单调区间;
(2)讨论f(x)的极值.
所以f(-1)=2是极大值,f(1)=-2是极小值.
(2)曲线方程为y=x3-3x,点A(0,16)不在曲线上.
设切点为M(x0,y0),则点M的坐标满足y0=x03-3x0.
因f′(x0)=3(x02-1),故切线的方程为y-y0=3(x02-1)(x-x0).
注意到点A(0,16)在切线上,有16-(x03-3x0)=3(x02-1)(0-x0),
化简得x03=-8,解得x0=-2.
所以切点为M(-2,-2),
切线方程为9x-y+16=0.
(本小题满分16分)
某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次品率
与日产量
(件)之间大体满足关系:
![]()
(注:次品率
,如
表示每生产10件产品,约有1件为次品.其余为合格品.)
已知每生产一件合格的仪器可以盈利
元,但每生产一件次品将亏损
元,故厂方希望定出合适的日产量,
(1)试将生产这种仪器每天的盈利额
(元)表示为日产量
(件)的函数;
(2)当日产量
为多少时,可获得最大利润?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com