(2)若A板电势变化周期T=1.0×10-5 s,在t=0时将带电粒子从紧临B板处无初速释放.粒子到达A板时动量的大小, 图30 图31 查看更多

 

题目列表(包括答案和解析)

第Ⅰ卷(选择题 共31分)

一、单项选择题.本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意.

1. 关于科学家和他们的贡献,下列说法中正确的是[来源:Www..com]

A.安培首先发现了电流的磁效应

B.伽利略认为自由落体运动是速度随位移均匀变化的运动

C.牛顿发现了万有引力定律,并计算出太阳与地球间引力的大小

D.法拉第提出了电场的观点,说明处于电场中电荷所受到的力是电场给予的

2.如图为一种主动式光控报警器原理图,图中R1R2为光敏电阻,R3R4为定值电阻.当射向光敏电阻R1R2的任何一束光线被遮挡时,都会引起警铃发声,则图中虚线框内的电路是

A.与门                  B.或门               C.或非门                  D.与非门

 


3.如图所示的交流电路中,理想变压器原线圈输入电压为U1,输入功率为P1,输出功率为P2,各交流电表均为理想电表.当滑动变阻器R的滑动头向下移动时

A.灯L变亮                                    B.各个电表读数均变大

C.因为U1不变,所以P1不变                              D.P1变大,且始终有P1= P2

4.竖直平面内光滑圆轨道外侧,一小球以某一水平速度v0A点出发沿圆轨道运动,至B点时脱离轨道,最终落在水平面上的C点,不计空气阻力.下列说法中不正确的是

A.在B点时,小球对圆轨道的压力为零

B.BC过程,小球做匀变速运动

C.在A点时,小球对圆轨道压力大于其重力

D.AB过程,小球水平方向的加速度先增加后减小

5.如图所示,水平面上放置质量为M的三角形斜劈,斜劈顶端安装光滑的定滑轮,细绳跨过定滑轮分别连接质量为m1m2的物块.m1在斜面上运动,三角形斜劈保持静止状态.下列说法中正确的是

A.若m2向下运动,则斜劈受到水平面向左摩擦力

B.若m1沿斜面向下加速运动,则斜劈受到水平面向右的摩擦力

C.若m1沿斜面向下运动,则斜劈受到水平面的支持力大于(m1+ m2+Mg

D.若m2向上运动,则轻绳的拉力一定大于m2g

二、多项选择题.本题共4小题,每小题4分,共计16分.每小题有多个选项符合题意.全部选对的得4分,选对但不全的得2分,错选或不答的得0分.

6.木星是太阳系中最大的行星,它有众多卫星.观察测出:木星绕太阳作圆周运动的半径为r1 周期为T1;木星的某一卫星绕木星作圆周运动的半径为r2 周期为T2.已知万有引力常量为G,则根据题中给定条件

A.能求出木星的质量

B.能求出木星与卫星间的万有引力

C.能求出太阳与木星间的万有引力

D.可以断定

7.如图所示,xOy坐标平面在竖直面内,x轴沿水平方向,y轴正方向竖直向上,在图示空间内有垂直于xOy平面的水平匀强磁场.一带电小球从O点由静止释放,运动轨迹如图中曲线.关于带电小球的运动,下列说法中正确的是

A.OAB轨迹为半圆

B.小球运动至最低点A时速度最大,且沿水平方向

C.小球在整个运动过程中机械能守恒

D.小球在A点时受到的洛伦兹力与重力大小相等

8.如图所示,质量为M、长为L的木板置于光滑的水平面上,一质量为m的滑块放置在木板左端,滑块与木板间滑动摩擦力大小为f,用水平的恒定拉力F作用于滑块.当滑块运动到木板右端时,木板在地面上移动的距离为s,滑块速度为v1,木板速度为v2,下列结论中正确的是

A.上述过程中,F做功大小为            

B.其他条件不变的情况下,F越大,滑块到达右端所用时间越长

C.其他条件不变的情况下,M越大,s越小

D.其他条件不变的情况下,f越大,滑块与木板间产生的热量越多

9.如图所示,两个固定的相同细环相距一定的距离,同轴放置,O1O2分别为两环的圆心,两环分别带有均匀分布的等量异种电荷.一带正电的粒子从很远处沿轴线飞来并穿过两环.则在带电粒子运动过程中

A.在O1点粒子加速度方向向左

B.从O1O2过程粒子电势能一直增加

C.轴线上O1点右侧存在一点,粒子在该点动能最小

D.轴线上O1点右侧、O2点左侧都存在场强为零的点,它们关于O1O2连线中点对称

 


第Ⅱ卷(非选择题 共89分)

三、简答题:本题分必做题(第lO、11题)和选做题(第12题)两部分,共计42分.请将解答填写在答题卡相应的位置.

必做题

10.测定木块与长木板之间的动摩擦因数时,采用如图所示的装置,图中长木板水平固定.

(1)实验过程中,电火花计时器应接在  ▲  (选填“直流”或“交流”)电源上.调整定滑轮高度,使  ▲ 

(2)已知重力加速度为g,测得木块的质量为M,砝码盘和砝码的总质量为m,木块的加速度为a,则木块与长木板间动摩擦因数μ=  ▲ 

(3)如图为木块在水平木板上带动纸带运动打出的一条纸带的一部分,0、1、2、3、4、5、6为计数点,相邻两计数点间还有4个打点未画出.从纸带上测出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.则木块加速度大小a=  ▲  m/s2(保留两位有效数字).

 


11.为了测量某电池的电动势 E(约为3V)和内阻 r,可供选择的器材如下:

A.电流表G1(2mA  100Ω)             B.电流表G2(1mA  内阻未知)

C.电阻箱R1(0~999.9Ω)                      D.电阻箱R2(0~9999Ω)

E.滑动变阻器R3(0~10Ω  1A)         F.滑动变阻器R4(0~1000Ω  10mA)

G.定值电阻R0(800Ω  0.1A)               H.待测电池

I.导线、电键若干

(1)采用如图甲所示的电路,测定电流表G2的内阻,得到电流表G1的示数I1、电流表G2的示数I2如下表所示:

I1(mA)

0.40

0.81

1.20

1.59

2.00

I2(mA)

0.20

0.40

0.60

0.80

1.00

 


根据测量数据,请在图乙坐标中描点作出I1I2图线.由图得到电流表G2的内阻等于

  ▲  Ω.

(2)在现有器材的条件下,测量该电池电动势和内阻,采用如图丙所示的电路,图中滑动变阻器①应该选用给定的器材中  ▲  ,电阻箱②选  ▲  (均填写器材代号).

(3)根据图丙所示电路,请在丁图中用笔画线代替导线,完成实物电路的连接.

 


12.选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑.如都作答,则按A、B两小题评分.)

A.(选修模块3-3)(12分)

(1)下列说法中正确的是  ▲ 

A.液体表面层分子间距离大于液体内部分子间距离,液体表面存在张力

B.扩散运动就是布朗运动

C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体

D.对任何一类与热现象有关的宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述

(2)将1ml的纯油酸加到500ml的酒精中,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴.现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的大小是  ▲  m(保留一位有效数字).

(3)如图所示,一直立的汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁是导热的,开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g

①求活塞停在B点时缸内封闭气体的压强;

②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q(一定量理想气体的内能仅由温度决定).

B.(选修模块3-4)(12分)

(1)下列说法中正确的是  ▲ 

A.照相机、摄影机镜头表面涂有增透膜,利用了光的干涉原理

B.光照射遮挡物形成的影轮廓模糊,是光的衍射现象

C.太阳光是偏振光

D.为了有效地发射电磁波,应该采用长波发射

(2)甲、乙两人站在地面上时身高都是L0, 甲、乙分别乘坐速度为0.6c和0.8cc为光速)的飞船同向运动,如图所示.此时乙观察到甲的身高L  ▲  L0;若甲向乙挥手,动作时间为t0,乙观察到甲动作时间为t1,则t1  ▲  t0(均选填“>”、“ =” 或“<”).

(3)x=0的质点在t=0时刻开始振动,产生的波沿x轴正方向传播,t1=0.14s时刻波的图象如图所示,质点A刚好开始振动.

①求波在介质中的传播速度;

②求x=4m的质点在0.14s内运动的路程.

   C.(选修模块3-5)(12分)

(1)下列说法中正确的是  ▲ 

A.康普顿效应进一步证实了光的波动特性

B.为了解释黑体辐射规律,普朗克提出电磁辐射的能量是量子化的

C.经典物理学不能解释原子的稳定性和原子光谱的分立特征

D.天然放射性元素衰变的快慢与化学、物理状态有关

(2)是不稳定的,能自发的发生衰变.

①完成衰变反应方程    ▲ 

衰变为,经过  ▲  α衰变,  ▲  β衰变.

(3)1919年,卢瑟福用α粒子轰击氮核发现质子.科学研究表明其核反应过程是:α粒子轰击静止的氮核后形成了不稳定的复核,复核发生衰变放出质子,变成氧核.设α粒子质量为m1,初速度为v0,氮核质量为m2,质子质量为m0, 氧核的质量为m3,不考虑相对论效应.

α粒子轰击氮核形成不稳定复核的瞬间,复核的速度为多大?

②求此过程中释放的核能.

四、计算题:本题共3小题,共计47分.解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.

13.如图所示,一质量为m的氢气球用细绳拴在地面上,地面上空风速水平且恒为v0,球静止时绳与水平方向夹角为α.某时刻绳突然断裂,氢气球飞走.已知氢气球在空气中运动时所受到的阻力f正比于其相对空气的速度v,可以表示为f=kvk为已知的常数).则

(1)氢气球受到的浮力为多大?

(2)绳断裂瞬间,氢气球加速度为多大?

(3)一段时间后氢气球在空中做匀速直线运动,其水平方向上的速度与风速v0相等,求此时气球速度大小(设空气密度不发生变化,重力加速度为g).

 


14.如图所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd,线框质量为m,电阻为R,边长为L.有一方向竖直向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L,左边界与ab边平行.线框在水平向右的拉力作用下垂直于边界线穿过磁场区.

(1)若线框以速度v匀速穿过磁场区,求线框在离开磁场时ab两点间的电势差;

(2)若线框从静止开始以恒定的加速度a运动,经过t1时间ab边开始进入磁场,求cd边将要进入磁场时刻回路的电功率;

(3)若线框以初速度v0进入磁场,且拉力的功率恒为P0.经过时间Tcd边进入磁场,此过程中回路产生的电热为Q.后来ab边刚穿出磁场时,线框速度也为v0,求线框穿过磁场所用的时间t

      

15.如图所示,有界匀强磁场的磁感应强度为B,方向垂直纸面向里,MN为其左边界,磁场中放置一半径为R的圆柱形金属圆筒,圆心OMN的距离OO1=2R,圆筒轴线与磁场平行.圆筒用导线通过一个电阻r0接地,最初金属圆筒不带电.现有范围足够大的平行电子束以速度v0从很远处沿垂直于左边界MN向右射入磁场区,已知电子质量为m,电量为e

(1)若电子初速度满足,则在最初圆筒上没有带电时,能够打到圆筒上的电子对应MN边界上O1两侧的范围是多大?

(2)当圆筒上电量达到相对稳定时,测量得到通过电阻r0的电流恒为I,忽略运动电子间的相互作用,求此时金属圆筒的电势φ和电子到达圆筒时速度v(取无穷远处或大地电势为零).

(3)在(2)的情况下,求金属圆筒的发热功率.

 


查看答案和解析>>

如图所示,真空中间距d=5 cm的两块平行金属板A、B与电源连接(图中未画出),其中B板接地(电势为零),A板电势变化的规律如图所示。将一个质量m=2.0×10-27 kg,电量q=+1.6×10-19 C的带电粒子从紧临B板处释放,不计重力。求

(1)在t=0时刻释放该带电粒子,释放瞬间粒子加速度的大小;

(2)若A板电势变化周期T=1.0×10-5 s,在t=0时将带电粒子从紧临B板处无初速释放,粒子到达A板时动量的大小;

(3)A板电势变化频率多大时,在t=到t=时间内从紧临B板处无初速释放该带电粒子,粒子不能到达A板。

查看答案和解析>>

23.如图1所示,真空中相距d=5 cm的两块平行金属板A、B与电源连接(图中未画出),其中B板接地(电势为零),A板电势变化的规律如图2所示。

       

     将一个质量m=2.0×10-27 kg,电量q=+1.6×10-19 C的带电粒子从紧临B板处释放,不计重力。求

(1)在t=0时刻释放该带电粒子,释放瞬间粒子加速度的大小;

(2)若A板电势变化周期T=1.0×10-5 s,在t=0时将带电粒子从紧临B板处无初速释放,粒子到达A板时动量的大小;

(3)A板电势变化频率多大时,在t=到t=时间内从紧临B板处无初速释放该带电粒子,粒子不能到达A板。

查看答案和解析>>

如图所示,真空中相距d=5 cm的两块平行金属板A、B与电源连接(图中未画出),其中B板接地(电势为零),A板电势变化的规律如图所示.将一个质量m=2.0×1027 kg,电量q=+1.6×10-19 C的带电粒子从紧临B板处释放,不计重力.

求(1)在t=0时刻释放该带电粒子,释放瞬间粒子加速度的大小;

(2)若A板电势变化周期T=1.0×10-5 s,在t=0时将带电粒子从紧临B板处无初速释放,粒子达到A板时动量的大小;

(3)A板电势变化频率多大时,在时间内从紧临B板处无初速释放该带电粒子,粒子不能到达A板.

查看答案和解析>>

如图甲所示,真空中相距d=5 cm的两块平行金属板A、B与电源连接(图中未画出),其中B板接地(电势为零),A板电势变化的规律如图乙所示.将一个质量m=2.0×10-27 kg,电量q=+1.6×10-4 C的带电粒子从紧临B板处释放,不计重力.

(1)

在t=0时刻释放该带电粒子,释放瞬间粒子加速度的大小

(2)

若A板电势变化周期T=1.0×10-5 s,在t=0时将带电粒子从紧临B板处无初速释放,粒子到达A板时动量的大小

(3)

A板电势变化频率多大时,在t=到t=时间内从紧临B板处无初速释放该带电粒子,粒子不能到达A板.

查看答案和解析>>

高考真题

1.【解析】交流电的概念,大小和方向都随时间变化,在t轴的上方为正,下方为负,A错。有效值只对正弦交流电使用,最大值一样,所以B错。由图可知,C对。变压之后频率不变,D错。

【答案】C

2.【解析】由e-t图像可知,交变电流电流的周期为0.25s,故频率为4Hz,选项A、B错误。根据欧姆定律可知交变电流的最大值为2A,故有效值为A,选项C正确。

【答案】C

3.【解析】本题考查正弦交流电的产生过程、楞次定律等知识和规律。从a图可看出线圈从垂直于中性面开始旋转,由楞次定律可判断,初始时刻电流方向为b到a,故瞬时电流的表达式为i=-imcos(+ωt),则图像为D图像所描述。平时注意线圈绕垂直于磁场的轴旋转时的瞬时电动势表达式的理解

【答案】D

4.【解析】原线圈电压有效值U1=220V,由电压比等于匝数比可得副线圈电压U2=55V,A对;电阻R上的电流为2A,由原副线圈电流比等于匝数的反比,可得电流表示数为0.5A, C对;输入功率为P=220×0.5W=110W,D错;周期T= =0.02s,B错。

【答案】AC

5.【解析】(1)输电线上的电流强度为I=A=52.63A

输电线路损耗的功率为

P=I2R=52.632×6W≈16620W=16.62kW

(2)改用高压输电后,输电线上的电流强度变为I′=A=4A

用户端在变压器降压前获得的电压    U1=U-I′R=(5000-4×6)V=4976V

根据      

用户得到的电压为U2×4976V=226.18V

  【答案】380,75%

6.【解析】带电粒子在交变电场中不断地作匀加速和匀减的交替运动,经过一个周期后,速度为零,再又重复前面的运动,所以选项A正确

【答案】A

7.【解析】原线圈中电压的有效值是220V,由变压比知副线圈中电压为100V,流过电阻的电流是10A;与电阻并联的电压表的示数是100V;经过1分钟电阻发出的热量是6×1034J。

【答案】D

8.【解析】理想变压器的特点是输入功率等于输出功率,当负载电阻增大时,由于副线圈的电压不变,所以输出电流I2减小,导致输出功率P2减小,所以输入功率P1减小;输入的电压不变,所以输入的电流I1减小,B正确

【答案】B

9.【解析】因为变压器的匝数与U1不变,所以U2与两电压表的示数均不变.当S断开时,因为负载电阻增大,故次级线圈中的电流I2减小,由于输入功率等于输出功率,所以I1也将减小,C正确;因为R1的电压减小,故R2、R3两端的电压将增大,I3变大,B正确.

【答案】BC

10.【解析】 (1)输电线的电阻为:                               P2=P1   P2=I2U2          联立以上五式解得:U2=8×104V              

输电线路上的电压损失 U=I2R=3200V 

【答案】(1)U2=8×104V   (2)3200V 

名校试题

1.【解析】线圈转动900后,进入磁场,线圈处于平行磁感线平面,磁通量变化最快,在这个过程中,没有感应电流;线圈再转动900后,线圈处于中性面,磁通量变化最慢,在这个过程中,磁通量增加,感应电动势和感应电流呈余弦规律变化,感应电流由b到a;再转动900后,线圈处于平行磁感线平面,磁通量变化最快,在这个过程中,磁通量减小,感应电流由a到b;再转动,离开磁场,没有感应电流,依次类推。

【答案】D

2.【解析】由图可知交交变电流的周期为0.04s,所以选项A正确;交变电压的最大值为100V,而电阻R=100Ω,所以交变电流的最大值为1A

【答案】AD

3.【解析】由图可以求得.交变电流的频率为40Hz,所以选项A错;交变电流的瞬时表达式为,所以选项B错;在t=0.01s时,穿过交流发电机线圈的磁通量为零,所以选项C错;因电流的有效值为2.5A,所以发电机线圈电阻为0.4Ω,则其产生的热功率为5W,故选项D对.

【答案】D

4【解析】V1示数小于正常值时,副线圈的输出电压也要变小,所以滑动触头P向上滑动,即选项A正确;当用电器增加时,副线圈的电流增大,输电线上损失的电压增大,要使电器正常工作,滑动触头P应向上滑,所以选项C正确

【答案】AC

5.【解析】副线圈的电流增大,输电线上损失的电压增,所以选项C正确

【答案】C

6.【解析】Ka合到b时,n1减小,由,可知U2增大,P2=随之增大,而P1=P2,又P1=I1U1,从而I1增大,A正确;Kb合到a时,与上述情况相反,P2将减小,B正确;P上滑时,R增大,P2=减小,又P1=P2P1=I1U1,从而I1减小,C错误;U1增大,由可知,U2增大,I2=随之增大,由可知I1也增大,D正确。

【答案】A、B、D正确。

7.【解析】由于次级两组副线圈的组合连接使得小灯泡回路中两线圈产生的感应电动势方向相反,所以小灯泡的工作电压有效值为:

因为理想变压器输入功率等于输出功率,故答案应选A.

【答案】A

8.【解析】电流互感器要把大电流变为小电流,因此原线圈的匝数少,副线圈的匝数多。监测每相的电流必须将原线圈串联在火线中。

【答案】A

9.【解析】(1)Em=nBSω

  代人数据得  Em=400×0.25×0.05×0.04×l00 V=20 V 

(2)Im=                                         

代人数据得Im=A=2A 

∵是正弦交变电流,所以电流表读数即有效值

I=A=1.41A   

(3)p=I2R=×9.9W=19。8W.  

【答案】(1)  20 V(2)   1.41A       (3)19。8W

10.  【解析】 发电站的输出电流

               ①

    输电线路损失的功率              ②

    则         ③

变压器的匝数比

【答案】

11. 【解析】⑴如图36所示。由于输送功率为P=500kW,一昼夜输送电能E=Pt=12000度,终点得到的电能E=7200度,因此效率η=60%。输电线上的电流可由I=P/U计算,为I=100A,而输电线损耗功率可由Pr=I 2r计算,其中Pr=4800/24=200kW,因此可求得r=20Ω。    

⑵输电线上损耗功率,原来Pr=200kW,现在要求Pr′=10kW ,计算可得输电电压应调节为U′=22.4kV。

【答案】(1)η=60%      20Ω   (2)22.4kV

12.【解析】(1)根据磁场分布特点,线框不论转到磁场中哪一位置,切割磁感线的速度始终与磁场方向垂直,故线框转到图示位置时,感应电动势的大小为

E=2Blv=2Bl=BlLω

(2)线框转动过程中,只能有一个线框进入磁场(作电源),另一个线框与外接电阻R并联后一起作为外电路。

电源内阻为r,外电路总电阻R=r

R两端的电压最大值:UR=IR=

(3)在磁场中,通过R的电流大小相等                                                               图37

iR=BlLω?                            

从线框进入磁场开始计时,每隔T/8(线框转动45°)电流发生一次变化,其iR随时间t变化的图象如图20所示。

【答案】(1)BlLω  (2)   (3)如图37所示

考点预测题

1.【解析】此题是已知图象求数学表达式的问题,电压表示数为10V是有效值,电压最大值为,CD均错;因此电流有效值为,交流电的电流最大值为,由图可知,交流电的周期T=0.02s,因此,故A正确

【答案】A

2.【解析】求解此题的关键是由线圈的转动来确定表达式。取轴Ox垂             

直于磁感强度,线框转角为θ(如图38所示)线框长边垂直于纸面,点A、B表示线框长边导线与纸面的交点,O点表示转轴与纸面的交点.                   

线框长边的线速度                                     

  一根长边导线产生的电动势为,一匝导线框所产生的感应电动势为

         

N匝线框产生的电动势应为   

磁极换成钕铁硼永磁体时,设匝数为N′,则有      图38                                          

由 En=EN′可得   

【答案】

3.【解析】正方形线框在磁场中旋转产生的感应电动势的最大值为Em,该交变电流的有效值为,正确答案为B

【答案】B

4.【解析】 由法拉第电磁感应定律和欧姆定律             

                     

可得内,

内,由有效值的定

                                           

【答案】B

5.【解析】钳形表是根据电磁感应原理制成的,故只能用来测量交流电流;对钳形表的初、次级满足,I1不变,故当n1增加3倍时I2=3.6A,正确答案为C.钳形表在使用时,初级是串联在被测电路中的,故同一电缆线虽多绕了几匝,但电缆线中的电流 I1保持不变.。

【答案】C

6. 【解析】由灯泡正常发光知,副线圈电压为220V,又原、副线圈电压与匝数成正比,D错。输入、输出功率相等,B错;电流表的示数为有效值,所以A错,C正确。

【答案】C

7.【解析】保持P的位置及U不变,S由b切换到a的过程中,副线圈匝数增多,输出电压增大,则R上消耗的功率也增大,原线圈的输入功率也增大;U不变,输入电流I增大,所以选项A、D错而C正确。保持P的位置及U不变,S由a切换到b的过程中,副线圈匝数减少,则输出电压减少,输出电流也减少。故选项B也正确。

【答案】BC

8.【解析】(1)设原、副线圈上的电压、电流分别为U1、U2、I1、I2.       

根据理想变压器的输入功率等于输出功率,有 I1U1=I2U2

当 I2=12mA时,I1即为熔断电流.代入数据,得 I1=0.98A

(2)设副线圈中电流为 I2′=10mA时,变压器的输入功率为 P1,根据理想变压器的输入功率等于输出功率,有 P1=I2′U2,代入数据,得 P1=180W

【答案】(1)I1=0.98A  (2)P1=180W

9.【解析】输入电流和输出电流都是由负载决定,输出、输入电压由电源决定.原距离输电原理考查.选项C对。

【答案】C

10.【解析】⑴所有灯都正常工作的总功率为22×6×40=5280W,用电器总电流为A,输电线上的电流A,降压变压器上:U2=4U2/=880V,输电线上的电压损失为:Ur=IRR=24V ,因此升压变压器的输出电压为U1/=UR+U2=904V,输入电压为U1=U1//4=226V,输入电流为I1=4I1/=24A,所以发电机输出功率为P=U1I1=5424W

    ⑵发电机的电动势E=U1+I1r=250V

    ⑶输电线上损耗的电功率PR=IR2R=144W

【答案】(1)  5424W  (2)250V  (3)144W

11.【解析】(1)由电场强度公式 

    带电粒子所受电场力 

      因此 

(2)粒子在时间内走过的距离为 

  故带电粒子在时恰好到达A板,根据动量定理,此时粒子的动量

 

(2)带电粒子在时间内向A板做匀加速运动,在向A板做匀减速运动,速度为零后将返回。粒子向A板运动的可能最大位移

  

要求粒子不能到达A板,则有s<d,由得,电势变化频率应满足

  

【答案】(1)   (2) (3)

 12.【解析】(1)质量为m电荷量为q的带电粒子以平行于极板的初速度v0射入长L板间距离为d的平行板电容器间,两板间电压为U,求射出时的侧移

时,电子能穿越平行板

时,电子不能穿越极板,中途就落到上板或下板上。如图39所示。                                               图39

可看出,与U成正比。电子穿越平行极板的临界条件为,此时两板上的电压可算得。因为    

所以==91V

(2)当交变电压的最大值超过91V时,射入的电子束会出现有时能通过两极板,有时不能通过的现象,由图40可以知道,要使

=2:1

在每个半周期内,==,也就是在时,=91V。由交变电流的方程得

所以                                    图40

【答案】(1)91V(2)

  13.【解析】 感抗对电流的阻碍作用是“通直流,阻交流”,“通低频,阻高频”,容抗对电流的阻碍作用是“通交流,隔直流”“通高频,阻低频”。线图L1的作用是让低频信号通过,阻碍高频成分,通过线圈L1的信号中还有少量的高频成分,C1的作用就是让这些少量的高频成分通过,阻碍低频信号通过,让低频信号通过扬声器甲,故扬声器甲是低音扬声器,选项A、B、C错误;L2的作用是让低频信号通过,阻碍高频成分通过,减弱通过扬声器乙的低频频电流,扬声器乙是高音扬声器,选项D正确。

【答案】D

14.【解析】当自行车车轮转动时,通过摩擦小轮使发电机的线框在匀强磁场内转动,线框中产生一正弦交流电动势,其最大值ε=ω0BSN 

式中ω0为线框转动的角速度,即摩擦小轮转动的角速度.

发电机两端电压的有效值

设自行车车轮转动的角速度为ω1,由于自行车车轮与摩擦小轮之间无相对滑动,有

R1ω1=R0ω0

小齿轮转动的角速度与自行车轮转动的角速度相同,也为ω1.设大齿轮转动的角速度为ω,有 R3ω=R2ω1由以上各式解得,代入数据得ω=3.2s-1

【答案】ω=3.2s-1

15.【解析】根据第一列电磁波从发出到收到回波可以确定飞机离开雷达站的第一个位置;  根据第二列电磁波从发出到收到回波可以确定飞机离开雷达站的第二个位置.这两个位置的变化(位移)对应的时间为 4秒,就可以计算飞机的速度值.(雷达波往返的时间远小于相邻两个雷达发出的时间).如图1所示模拟了雷达站雷达屏上所看到的图案,图中为第一列雷达波及其回波,为第二列雷达波及其回波(由于雷达波在传播过程中有损耗,所以回波的幅值较发出时小).设飞机的速度为v,之间的时间间隔为 t1,之间的时间间隔为t2之间的时间间隔为t,则vt=c(t1-t2)/2,所以v=c(t1-t2)/2t=525m/s.

【答案】525m/s

16.【解析】(1)∵         

∴f1=3.00×108/2×10-9=1.5×1017(Hz)   f2=3.00×108/1×10-4=3×1012(Hz)

∴辐射的频率范围为3×1012Hz~1.5×1017Hz

(2)每小时从太阳表面辐射的总能量为代入数所得W=1.38×1010J

(3)设火星表面温度为T,太阳到火星距离为d,火星单位时间内吸收来自太阳的辐射能量为   ∴

火星单位时间内向外辐射电磁波能量为

火星处在平衡状态,即

由上式解得火星平均温度

【答案】(1)3×1012Hz~1.5×1017Hz   (2)1.38×1010J (3)

 


同步练习册答案