14.如图23是研究光电效应的实验电路.现用等离子态的氢气跃迁时所发出的光照射光电管的阴极K.测得微安表的示数是40 μA.电压表的示数是20V.已知光电管阴极材料的逸出功是3.6eV.求:(1)氢气发光的最短波长, (2)光电管阴极材料的极限波长,(3)光电子到达阳极A的最大动能. 查看更多

 

题目列表(包括答案和解析)

(1)某同学利用光电门传感器设计了一个研究小物体自由下落时机械能是否守恒的实验,实验装置如图所示,图中A、B两位置分别固定了两个光电门传感器.实验时测得小物体上宽度为d的挡光片通过A的挡光时间为t1,通过B的挡光时间为t2.为了证明小物体通过A、B时的机械能相等,还需要进行一些实验测量和列式证明.

①(单选)选出下列还需要的实验测量步骤

A.用天平测出运动小物体的质量m

B.测出A、B两传感器之间的竖直距离h

C.测出小物体释放时离桌面的高度H

D.用秒表测出运动小物体通过A、B两传感器的时间△t

②若该同学用d和t的比值来反映小物体经过A、B光电门时的速度,并设想如果能满足________________________关系式,即能证明在自由落体过程中小物体的机械能是守恒的.

(2)①为测量某电阻丝R的电阻值,某同学用多用电表粗测其电阻.用已经调零且选择开关指向欧姆挡“×10”档位的多用电表测量,发现指针的偏转角度太大,这时他应将选择开关换成欧姆挡的“     ”档位(选填“×100”或“×1”),然后进行           ,再次测量电阻丝的阻值,其表盘及指针所指位置如右图所示,则此段电阻丝的电阻为       Ω.

②如图所示,用伏安法测电源电动势和内阻的实验中,在电路中接一阻值为2Ω的电阻R0,通过改变滑动变阻器,得到几组电表的实验数据:

U(V)

1.2

1.0

0.8

0.6

I(A)

0.10

0.17

0.23

0.30

I.R0的作用是                   

II.用作图法在坐标系上作出U-I图线;

III.利用图线,测得电动势E=         V,内阻r =        Ω。(结果保留两位有效数字)

查看答案和解析>>

(1)(6分)某同学利用光电门传感器设计了一个研究小物体自由下落时机械能是否守恒的实验,实验装置如图所示,图中A、B两位置分别固定了两个光电门传感器.实验时测得小物体上宽度为d的挡光片通过A的挡光时间为t1,通过B的挡光时间为t2.为了证明小物体通过A、B时的机械能相等,还需要进行一些实验测量和列式证明.

①(单选)选出下列还需要的实验测量步骤

A.用天平测出运动小物体的质量m

B.测出A、B两传感器之间的竖直距离h

C.测出小物体释放时离桌面的高度H

D.用秒表测出运动小物体通过A、B两传感器的时间△t

②若该同学用d和t的比值来反映小物体经过A、B光电门时的速度,并设想如果能满足________________________关系式,即能证明在自由落体过程中小物体的机械能是守恒的.

(2)(12分)①为测量某电阻丝R的电阻值,某同学用多用电表粗测其电阻.用已经调零且选择开关指向欧姆挡“×10”档位的多用电表测量,发现指针的偏转角度太大,这时他应将选择开关换成欧姆挡的“     ”档位(选填“×100”或“×1”),然后进行           ,再次测量电阻丝的阻值,其表盘及指针所指位置如右图所示,则此段电阻丝的电阻为       Ω.

 

②如图所示,用伏安法测电源电动势和内阻的实验中,在电路中接一阻值为2Ω的电阻R0,通过改变滑动变阻器,得到几组电表的实验数据:

U(V)

1.2

1.0

0.8

0.6

I(A)

0.10

0.17

0.23

0.30

I.R0的作用是                   

II.用作图法在坐标系上作出U-I图线;

III.利用图线,测得电动势E=         V,内阻r =        Ω。(结果保留两位有效数字)

 

查看答案和解析>>

(1)(6分)某同学利用光电门传感器设计了一个研究小物体自由下落时机械能是否守恒的实验,实验装置如图所示,图中A、B两位置分别固定了两个光电门传感器.实验时测得小物体上宽度为d的挡光片通过A的挡光时间为t1,通过B的挡光时间为t2.为了证明小物体通过A、B时的机械能相等,还需要进行一些实验测量和列式证明.

①(单选)选出下列还需要的实验测量步骤

A.用天平测出运动小物体的质量m

B.测出A、B两传感器之间的竖直距离h

C.测出小物体释放时离桌面的高度H

D.用秒表测出运动小物体通过A、B两传感器的时间△t

②若该同学用d和t的比值来反映小物体经过A、B光电门时的速度,并设想如果能满足________________________关系式,即能证明在自由落体过程中小物体的机械能是守恒的.

(2)(12分)①为测量某电阻丝R的电阻值,某同学用多用电表粗测其电阻.用已经调零且选择开关指向欧姆挡“×10”档位的多用电表测量,发现指针的偏转角度太大,这时他应将选择开关换成欧姆挡的“     ”档位(选填“×100”或“×1”),然后进行           ,再次测量电阻丝的阻值,其表盘及指针所指位置如右图所示,则此段电阻丝的电阻为       Ω.

 

②如图所示,用伏安法测电源电动势和内阻的实验中,在电路中接一阻值为2Ω的电阻R0,通过改变滑动变阻器,得到几组电表的实验数据:

U(V)

1.2

1.0

0.8

0.6

I(A)

0.10

0.17

0.23

0.30

I.R0的作用是                   

II.用作图法在坐标系上作出U-I图线;

III.利用图线,测得电动势E=         V,内阻r =        Ω。(结果保留两位有效数字)

 

查看答案和解析>>

第八部分 静电场

第一讲 基本知识介绍

在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。

如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。

一、电场强度

1、实验定律

a、库仑定律

内容;

条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr)。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。

b、电荷守恒定律

c、叠加原理

2、电场强度

a、电场强度的定义

电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。

b、不同电场中场强的计算

决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。这可以从不同电场的场强决定式看出——

⑴点电荷:E = k

结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如——

⑵均匀带电环,垂直环面轴线上的某点P:E = ,其中r和R的意义见图7-1。

⑶均匀带电球壳

内部:E = 0

外部:E = k ,其中r指考察点到球心的距离

如果球壳是有厚度的的(内径R1 、外径R2),在壳体中(R1<r<R2):

E =  ,其中ρ为电荷体密度。这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔即为图7-2中虚线以内部分的总电量…〕。

⑷无限长均匀带电直线(电荷线密度为λ):E = 

⑸无限大均匀带电平面(电荷面密度为σ):E = 2πkσ

二、电势

1、电势:把一电荷从P点移到参考点P0时电场力所做的功W与该电荷电量q的比值,即

U = 

参考点即电势为零的点,通常取无穷远或大地为参考点。

和场强一样,电势是属于场本身的物理量。W则为电荷的电势能。

2、典型电场的电势

a、点电荷

以无穷远为参考点,U = k

b、均匀带电球壳

以无穷远为参考点,U = k ,U = k

3、电势的叠加

由于电势的是标量,所以电势的叠加服从代数加法。很显然,有了点电荷电势的表达式和叠加原理,我们可以求出任何电场的电势分布。

4、电场力对电荷做功

WAB = q(UA - UB)= qUAB 

三、静电场中的导体

静电感应→静电平衡(狭义和广义)→静电屏蔽

1、静电平衡的特征可以总结为以下三层含义——

a、导体内部的合场强为零;表面的合场强不为零且一般各处不等,表面的合场强方向总是垂直导体表面。

b、导体是等势体,表面是等势面。

c、导体内部没有净电荷;孤立导体的净电荷在表面的分布情况取决于导体表面的曲率。

2、静电屏蔽

导体壳(网罩)不接地时,可以实现外部对内部的屏蔽,但不能实现内部对外部的屏蔽;导体壳(网罩)接地后,既可实现外部对内部的屏蔽,也可实现内部对外部的屏蔽。

四、电容

1、电容器

孤立导体电容器→一般电容器

2、电容

a、定义式 C = 

b、决定式。决定电容器电容的因素是:导体的形状和位置关系、绝缘介质的种类,所以不同电容器有不同的电容

⑴平行板电容器 C =  =  ,其中ε为绝对介电常数(真空中ε0 =  ,其它介质中ε= ),εr则为相对介电常数,εr =  

⑵柱形电容器:C = 

⑶球形电容器:C = 

3、电容器的连接

a、串联  = +++ … +

b、并联 C = C1 + C2 + C3 + … + Cn 

4、电容器的能量

用图7-3表征电容器的充电过程,“搬运”电荷做功W就是图中阴影的面积,这也就是电容器的储能E ,所以

E = q0U0 = C = 

电场的能量。电容器储存的能量究竟是属于电荷还是属于电场?正确答案是后者,因此,我们可以将电容器的能量用场强E表示。

对平行板电容器 E = E2 

认为电场能均匀分布在电场中,则单位体积的电场储能 w = E2 。而且,这以结论适用于非匀强电场。

五、电介质的极化

1、电介质的极化

a、电介质分为两类:无极分子和有极分子,前者是指在没有外电场时每个分子的正、负电荷“重心”彼此重合(如气态的H2 、O2 、N2和CO2),后者则反之(如气态的H2O 、SO2和液态的水硝基笨)

b、电介质的极化:当介质中存在外电场时,无极分子会变为有极分子,有极分子会由原来的杂乱排列变成规则排列,如图7-4所示。

2、束缚电荷、自由电荷、极化电荷与宏观过剩电荷

a、束缚电荷与自由电荷:在图7-4中,电介质左右两端分别显现负电和正电,但这些电荷并不能自由移动,因此称为束缚电荷,除了电介质,导体中的原子核和内层电子也是束缚电荷;反之,能够自由移动的电荷称为自由电荷。事实上,导体中存在束缚电荷与自由电荷,绝缘体中也存在束缚电荷和自由电荷,只是它们的比例差异较大而已。

b、极化电荷是更严格意义上的束缚电荷,就是指图7-4中电介质两端显现的电荷。而宏观过剩电荷是相对极化电荷来说的,它是指可以自由移动的净电荷。宏观过剩电荷与极化电荷的重要区别是:前者能够用来冲放电,也能用仪表测量,但后者却不能。

第二讲 重要模型与专题

一、场强和电场力

【物理情形1】试证明:均匀带电球壳内部任意一点的场强均为零。

【模型分析】这是一个叠加原理应用的基本事例。

如图7-5所示,在球壳内取一点P ,以P为顶点做两个对顶的、顶角很小的锥体,锥体与球面相交得到球面上的两个面元ΔS1和ΔS2 ,设球面的电荷面密度为σ,则这两个面元在P点激发的场强分别为

ΔE1 = k

ΔE2 = k

为了弄清ΔE1和ΔE2的大小关系,引进锥体顶部的立体角ΔΩ ,显然

 = ΔΩ = 

所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它们的方向是相反的,故在P点激发的合场强为零。

同理,其它各个相对的面元ΔS3和ΔS4 、ΔS5和ΔS6  激发的合场强均为零。原命题得证。

【模型变换】半径为R的均匀带电球面,电荷的面密度为σ,试求球心处的电场强度。

【解析】如图7-6所示,在球面上的P处取一极小的面元ΔS ,它在球心O点激发的场强大小为

ΔE = k ,方向由P指向O点。

无穷多个这样的面元激发的场强大小和ΔS激发的完全相同,但方向各不相同,它们矢量合成的效果怎样呢?这里我们要大胆地预见——由于由于在x方向、y方向上的对称性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求

ΔEz = ΔEcosθ= k ,而且ΔScosθ为面元在xoy平面的投影,设为ΔS′

所以 ΣEz = ΣΔS′

 ΣΔS′= πR2 

【答案】E = kπσ ,方向垂直边界线所在的平面。

〖学员思考〗如果这个半球面在yoz平面的两边均匀带有异种电荷,面密度仍为σ,那么,球心处的场强又是多少?

〖推荐解法〗将半球面看成4个球面,每个球面在x、y、z三个方向上分量均为 kπσ,能够对称抵消的将是y、z两个方向上的分量,因此ΣE = ΣEx …

〖答案〗大小为kπσ,方向沿x轴方向(由带正电的一方指向带负电的一方)。

【物理情形2】有一个均匀的带电球体,球心在O点,半径为R ,电荷体密度为ρ ,球体内有一个球形空腔,空腔球心在O′点,半径为R′,= a ,如图7-7所示,试求空腔中各点的场强。

【模型分析】这里涉及两个知识的应用:一是均匀带电球体的场强定式(它也是来自叠加原理,这里具体用到的是球体内部的结论,即“剥皮法则”),二是填补法。

将球体和空腔看成完整的带正电的大球和带负电(电荷体密度相等)的小球的集合,对于空腔中任意一点P ,设 = r1 , = r2 ,则大球激发的场强为

E1 = k = kρπr1 ,方向由O指向P

“小球”激发的场强为

E2 = k = kρπr2 ,方向由P指向O′

E1和E2的矢量合成遵从平行四边形法则,ΣE的方向如图。又由于矢量三角形PE1ΣE和空间位置三角形OP O′是相似的,ΣE的大小和方向就不难确定了。

【答案】恒为kρπa ,方向均沿O → O′,空腔里的电场是匀强电场。

〖学员思考〗如果在模型2中的OO′连线上O′一侧距离O为b(b>R)的地方放一个电量为q的点电荷,它受到的电场力将为多大?

〖解说〗上面解法的按部就班应用…

〖答〗πkρq〔?〕。

二、电势、电量与电场力的功

【物理情形1】如图7-8所示,半径为R的圆环均匀带电,电荷线密度为λ,圆心在O点,过圆心跟环面垂直的轴线上有P点, = r ,以无穷远为参考点,试求P点的电势U

【模型分析】这是一个电势标量叠加的简单模型。先在圆环上取一个元段ΔL ,它在P点形成的电势

ΔU = k

环共有段,各段在P点形成的电势相同,而且它们是标量叠加。

【答案】UP = 

〖思考〗如果上题中知道的是环的总电量Q ,则UP的结论为多少?如果这个总电量的分布不是均匀的,结论会改变吗?

〖答〗UP =  ;结论不会改变。

〖再思考〗将环换成半径为R的薄球壳,总电量仍为Q ,试问:(1)当电量均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?(2)当电量不均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?

〖解说〗(1)球心电势的求解从略;

球内任一点的求解参看图7-5

ΔU1 = k= k·= kσΔΩ

ΔU2 = kσΔΩ

它们代数叠加成 ΔU = ΔU1 + ΔU2 = kσΔΩ

而 r1 + r2 = 2Rcosα

所以 ΔU = 2RkσΔΩ

所有面元形成电势的叠加 ΣU = 2RkσΣΔΩ

注意:一个完整球面的ΣΔΩ = 4π(单位:球面度sr),但作为对顶的锥角,ΣΔΩ只能是2π ,所以——

ΣU = 4πRkσ= k

(2)球心电势的求解和〖思考〗相同;

球内任一点的电势求解可以从(1)问的求解过程得到结论的反证。

〖答〗(1)球心、球内任一点的电势均为k ;(2)球心电势仍为k ,但其它各点的电势将随电量的分布情况的不同而不同(内部不再是等势体,球面不再是等势面)。

【相关应用】如图7-9所示,球形导体空腔内、外壁的半径分别为R1和R2 ,带有净电量+q ,现在其内部距球心为r的地方放一个电量为+Q的点电荷,试求球心处的电势。

【解析】由于静电感应,球壳的内、外壁形成两个带电球壳。球心电势是两个球壳形成电势、点电荷形成电势的合效果。

根据静电感应的尝试,内壁的电荷量为-Q ,外壁的电荷量为+Q+q ,虽然内壁的带电是不均匀的,根据上面的结论,其在球心形成的电势仍可以应用定式,所以…

【答案】Uo = k - k + k 

〖反馈练习〗如图7-10所示,两个极薄的同心导体球壳A和B,半径分别为RA和RB ,现让A壳接地,而在B壳的外部距球心d的地方放一个电量为+q的点电荷。试求:(1)A球壳的感应电荷量;(2)外球壳的电势。

〖解说〗这是一个更为复杂的静电感应情形,B壳将形成图示的感应电荷分布(但没有净电量),A壳的情形未画出(有净电量),它们的感应电荷分布都是不均匀的。

此外,我们还要用到一个重要的常识:接地导体(A壳)的电势为零。但值得注意的是,这里的“为零”是一个合效果,它是点电荷q 、A壳、B壳(带同样电荷时)单独存在时在A中形成的的电势的代数和,所以,当我们以球心O点为对象,有

UO = k + k + k = 0

QB应指B球壳上的净电荷量,故 QB = 0

所以 QA = -q

☆学员讨论:A壳的各处电势均为零,我们的方程能不能针对A壳表面上的某点去列?(答:不能,非均匀带电球壳的球心以外的点不能应用定式!)

基于刚才的讨论,求B的电势时也只能求B的球心的电势(独立的B壳是等势体,球心电势即为所求)——

UB = k + k

〖答〗(1)QA = -q ;(2)UB = k(1-) 。

【物理情形2】图7-11中,三根实线表示三根首尾相连的等长绝缘细棒,每根棒上的电荷分布情况与绝缘棒都换成导体棒时完全相同。点A是Δabc的中心,点B则与A相对bc棒对称,且已测得它们的电势分别为UA和UB 。试问:若将ab棒取走,A、B两点的电势将变为多少?

【模型分析】由于细棒上的电荷分布既不均匀、三根细棒也没有构成环形,故前面的定式不能直接应用。若用元段分割→叠加,也具有相当的困难。所以这里介绍另一种求电势的方法。

每根细棒的电荷分布虽然复杂,但相对各自的中点必然是对称的,而且三根棒的总电量、分布情况彼此必然相同。这就意味着:①三棒对A点的电势贡献都相同(可设为U1);②ab棒、ac棒对B点的电势贡献相同(可设为U2);③bc棒对A、B两点的贡献相同(为U1)。

所以,取走ab前  3U1 = UA

                 2U2 + U1 = UB

取走ab后,因三棒是绝缘体,电荷分布不变,故电势贡献不变,所以

  UA′= 2U1

                 UB′= U1 + U2

【答案】UA′= UA ;UB′= UA + UB 

〖模型变换〗正四面体盒子由彼此绝缘的四块导体板构成,各导体板带电且电势分别为U1 、U2 、U3和U4 ,则盒子中心点O的电势U等于多少?

〖解说〗此处的四块板子虽然位置相对O点具有对称性,但电量各不相同,因此对O点的电势贡献也不相同,所以应该想一点办法——

我们用“填补法”将电量不对称的情形加以改观:先将每一块导体板复制三块,作成一个正四面体盒子,然后将这四个盒子位置重合地放置——构成一个有四层壁的新盒子。在这个新盒子中,每个壁的电量将是完全相同的(为原来四块板的电量之和)、电势也完全相同(为U1 + U2 + U3 + U4),新盒子表面就构成了一个等势面、整个盒子也是一个等势体,故新盒子的中心电势为

U′= U1 + U2 + U3 + U4 

最后回到原来的单层盒子,中心电势必为 U =  U′

〖答〗U = (U1 + U2 + U3 + U4)。

☆学员讨论:刚才的这种解题思想是否适用于“物理情形2”?(答:不行,因为三角形各边上电势虽然相等,但中点的电势和边上的并不相等。)

〖反馈练习〗电荷q均匀分布在半球面ACB上,球面半径为R ,CD为通过半球顶点C和球心O的轴线,如图7-12所示。P、Q为CD轴线上相对O点对称的两点,已知P点的电势为UP ,试求Q点的电势UQ 。

〖解说〗这又是一个填补法的应用。将半球面补成完整球面,并令右边内、外层均匀地带上电量为q的电荷,如图7-12所示。

从电量的角度看,右半球面可以看作不存在,故这时P、Q的电势不会有任何改变。

而换一个角度看,P、Q的电势可以看成是两者的叠加:①带电量为2q的完整球面;②带电量为-q的半球面。

考查P点,UP = k + U半球面

其中 U半球面显然和为填补时Q点的电势大小相等、符号相反,即 U半球面= -UQ 

以上的两个关系已经足以解题了。

〖答〗UQ = k - UP 。

【物理情形3】如图7-13所示,A、B两点相距2L ,圆弧是以B为圆心、L为半径的半圆。A处放有电量为q的电荷,B处放有电量为-q的点电荷。试问:(1)将单位正电荷从O点沿移到D点,电场力对它做了多少功?(2)将单位负电荷从D点沿AB的延长线移到无穷远处去,电场力对它做多少功?

【模型分析】电势叠加和关系WAB = q(UA - UB)= qUAB的基本应用。

UO = k + k = 0

UD = k + k = -

U = 0

再用功与电势的关系即可。

【答案】(1);(2) 

【相关应用】在不计重力空间,有A、B两个带电小球,电量分别为q1和q2 ,质量分别为m1和m2 ,被固定在相距L的两点。试问:(1)若解除A球的固定,它能获得的最大动能是多少?(2)若同时解除两球的固定,它们各自的获得的最大动能是多少?(3)未解除固定时,这个系统的静电势能是多少?

【解说】第(1)问甚间;第(2)问在能量方面类比反冲装置的能量计算,另启用动量守恒关系;第(3)问是在前两问基础上得出的必然结论…(这里就回到了一个基本的观念斧正:势能是属于场和场中物体的系统,而非单纯属于场中物体——这在过去一直是被忽视的。在两个点电荷的环境中,我们通常说“两个点电荷的势能”是多少。)

【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 

〖思考〗设三个点电荷的电量分别为q1 、q2和q3 ,两两相距为r12 、r23和r31 ,则这个点电荷系统的静电势能是多少?

〖解〗略。

〖答〗k(++)。

〖反馈应用〗如图7-14所示,三个带同种电荷的相同金属小球,每个球的质量均为m 、电量均为q ,用长度为L的三根绝缘轻绳连接着,系统放在光滑、绝缘的水平面上。现将其中的一根绳子剪断,三个球将开始运动起来,试求中间这个小球的最大速度。

〖解〗设剪断的是1、3之间的绳子,动力学分析易知,2球获得最大动能时,1、2之间的绳子与2、3之间的绳子刚好应该在一条直线上。而且由动量守恒知,三球不可能有沿绳子方向的速度。设2球的速度为v ,1球和3球的速度为v′,则

动量关系 mv + 2m v′= 0

能量关系 3k = 2 k + k + mv2 + 2m

解以上两式即可的v值。

〖答〗v = q 

三、电场中的导体和电介质

【物理情形】两块平行放置的很大的金属薄板A和B,面积都是S ,间距为d(d远小于金属板的线度),已知A板带净电量+Q1 ,B板带尽电量+Q2 ,且Q2<Q1 ,试求:(1)两板内外表面的电量分别是多少;(2)空间各处的场强;(3)两板间的电势差。

【模型分析】由于静电感应,A、B两板的四个平面的电量将呈现一定规律的分布(金属板虽然很薄,但内部合场强为零的结论还是存在的);这里应注意金属板“很大”的前提条件,它事实上是指物理无穷大,因此,可以应用无限大平板的场强定式。

为方便解题,做图7-15,忽略边缘效应,四个面的电荷分布应是均匀的,设四个面的电荷面密度分别为σ1 、σ2 、σ3和σ4 ,显然

(σ1 + σ2)S = Q1 

(σ3 + σ4)S = Q2 

A板内部空间场强为零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0

A板内部空间场强为零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0

解以上四式易得 σ1 = σ4 = 

               σ2 = ?σ3 = 

有了四个面的电荷密度,Ⅰ、Ⅱ、Ⅲ空间的场强就好求了〔如E =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。

最后,UAB = Ed

【答案】(1)A板外侧电量、A板内侧电量,B板内侧电量?、B板外侧电量;(2)A板外侧空间场强2πk,方向垂直A板向外,A、B板之间空间场强2πk,方向由A垂直指向B,B板外侧空间场强2πk,方向垂直B板向外;(3)A、B两板的电势差为2πkd,A板电势高。

〖学员思考〗如果两板带等量异号的净电荷,两板的外侧空间场强等于多少?(答:为零。)

〖学员讨论〗(原模型中)作为一个电容器,它的“电量”是多少(答:)?如果在板间充满相对介电常数为εr的电介质,是否会影响四个面的电荷分布(答:不会)?是否会影响三个空间的场强(答:只会影响Ⅱ空间的场强)?

〖学员讨论〗(原模型中)我们是否可以求出A、B两板之间的静电力?〔答:可以;以A为对象,外侧受力·(方向相左),内侧受力·(方向向右),它们合成即可,结论为F = Q1Q2 ,排斥力。〕

【模型变换】如图7-16所示,一平行板电容器,极板面积为S ,其上半部为真空,而下半部充满相对介电常数为εr的均匀电介质,当两极板分别带上+Q和?Q的电量后,试求:(1)板上自由电荷的分布;(2)两板之间的场强;(3)介质表面的极化电荷。

【解说】电介质的充入虽然不能改变内表面的电量总数,但由于改变了场强,故对电荷的分布情况肯定有影响。设真空部分电量为Q1 ,介质部分电量为Q2 ,显然有

Q1 + Q2 = Q

两板分别为等势体,将电容器看成上下两个电容器的并联,必有

U1 = U2   =  ,即  = 

解以上两式即可得Q1和Q2 

场强可以根据E = 关系求解,比较常规(上下部分的场强相等)。

上下部分的电量是不等的,但场强居然相等,这怎么解释?从公式的角度看,E = 2πkσ(单面平板),当k 、σ同时改变,可以保持E不变,但这是一种结论所展示的表象。从内在的角度看,k的改变正是由于极化电荷的出现所致,也就是说,极化电荷的存在相当于在真空中形成了一个新的电场,正是这个电场与自由电荷(在真空中)形成的电场叠加成为E2 ,所以

E2 = 4πk(σ ? σ′)= 4πk( ? 

请注意:①这里的σ′和Q′是指极化电荷的面密度和总量;② E = 4πkσ的关系是由两个带电面叠加的合效果。

【答案】(1)真空部分的电量为Q ,介质部分的电量为Q ;(2)整个空间的场强均为 ;(3)Q 。

〖思考应用〗一个带电量为Q的金属小球,周围充满相对介电常数为εr的均匀电介质,试求与与导体表面接触的介质表面的极化电荷量。

〖解〗略。

〖答〗Q′= Q 。

四、电容器的相关计算

【物理情形1】由许多个电容为C的电容器组成一个如图7-17所示的多级网络,试问:(1)在最后一级的右边并联一个多大电容C′,可使整个网络的A、B两端电容也为C′?(2)不接C′,但无限地增加网络的级数,整个网络A、B两端的总电容是多少?

【模型分析】这是一个练习电容电路简化基本事例。

第(1)问中,未给出具体级数,一般结论应适用特殊情形:令级数为1 ,于是

 +  =  解C′即可。

第(2)问中,因为“无限”,所以“无限加一级后仍为无限”,不难得出方程

 +  = 

【答案】(1)C ;(2)C 。

【相关模型】在图7-18所示的电路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,试求A、B之间的等效电容。

【解说】对于既非串联也非并联的电路,需要用到一种“Δ→Y型变换”,参见图7-19,根据三个端点之间的电容等效,容易得出定式——

Δ→Y型:Ca = 

          Cb = 

          Cc = 

Y→Δ型:C1 = 

         C2 = 

         C3 = 

有了这样的定式后,我们便可以进行如图7-20所示的四步电路简化(为了方便,电容不宜引进新的符号表达,而是直接将变换后的量值标示在图中)——

【答】约2.23μF 。

【物理情形2】如图7-21所示的电路中,三个电容器完全相同,电源电动势ε1 = 3.0V ,ε2 = 4.5V,开关K1和K2接通前电容器均未带电,试求K1和K2接通后三个电容器的电压Uao 、Ubo和Uco各为多少。

【解说】这是一个考查电容器电路的基本习题,解题的关键是要抓与o相连的三块极板(俗称“孤岛”)的总电量为零。

电量关系:++= 0

电势关系:ε1 = Uao + Uob = Uao ? Ubo 

          ε2 = Ubo + Uoc = Ubo ? Uco 

解以上三式即可。

【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。

【伸展应用】如图7-22所示,由n个单元组成的电容器网络,每一个单元由三个电容器连接而成,其中有两个的电容为3C ,另一个的电容为3C 。以a、b为网络的输入端,a′、b′为输出端,今在a、b间加一个恒定电压U ,而在a′b′间接一个电容为C的电容器,试求:(1)从第k单元输入端算起,后面所有电容器储存的总电能;(2)若把第一单元输出端与后面断开,再除去电源,并把它的输入端短路,则这个单元的三个电容器储存的总电能是多少?

【解说】这是一个结合网络计算和“孤岛现象”的典型事例。

(1)类似“物理情形1”的计算,可得 C = Ck = C

所以,从输入端算起,第k单元后的电压的经验公式为 Uk = 

再算能量储存就不难了。

(2)断开前,可以算出第一单元的三个电容器、以及后面“系统”的电量分配如图7-23中的左图所示。这时,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤岛”。此后,电容器的相互充电过程(C3类比为“电源”)满足——

电量关系:Q1′= Q3

          Q2′+ Q3′= 

电势关系: = 

从以上三式解得 Q1′= Q3′=  ,Q2′=  ,这样系统的储能就可以用得出了。

【答】(1)Ek = ;(2) 。

〖学员思考〗图7-23展示的过程中,始末状态的电容器储能是否一样?(答:不一样;在相互充电的过程中,导线消耗的焦耳热已不可忽略。)

☆第七部分完☆

查看答案和解析>>

高考真题

1.【解析】通过手指的缝隙观察日光灯,看到彩色条纹,是光的衍射现象。D不正确。

【答案】D

 

 2.【解析】由题可知单色光在玻璃球体发生了全反射,如图24所示,

为光线在玻璃球内的光路图.A、C为折射点,B为反射点,作OD

平行于入射光线,故,所以

玻璃的折射率.                                

【答案】C                                                     图24

 

3.【解析】依题意,画出红、蓝光线经过平板玻璃砖实的光路如图25示。玻璃中的光速则为,设玻璃砖的厚度为d,在未发生全反射之前,光通过玻璃砖的时间为。由折射定律知,因此,,由于蓝光的频率大于红光的频率,故玻璃对红光的折射率n1小于对蓝光的折射率n2且都大于1.5,考虑以上因素,                                                           

 

图25

由此式可知,在未发生全反射之前,t1<t2

【答案】B

4.【解析】白光作杨氏双缝干涉实验,屏上将呈现彩色条纹,A错;用红光作光源,屏上将呈现红色两条纹与暗条纹(即黑条纹)相间,B对;红光和紫光频率不同,不能产生干涉条纹,C错;紫光作光源,遮住一条狭缝,屏上出现单缝衍射条纹,即间距不等的条纹,D对

【答案】BD

5.【解析】金属丝圈的转动,改变不了肥皂液膜的上薄下厚的形状,由干涉原理可知干涉条纹与金属丝圈在该竖直平面内的转动无关,仍然是水平的干涉条纹,D对。                      图4

【答案】D

6.【解析】吹出的肥皂泡却是彩色的,证时了光的干涉现象,热中子的德布罗意波长与晶体中原子间距大致相同,说明了光的波动性.

【答案】BD

 

7.【解析】微波是电磁波,其波长在10-3m到10m之间;黑体的热辐射是辐射电磁波;普朗克在研究黑体的热辐射问题中提出了能量子假说

【答案】ACD

 

8.【解析】光导纤维传递光信号的是利用了几何光学的全反射  ,全反射的条件是光从光密介质射向光疏介质,且入射角等于或大于临界角

【答案】全反射   光疏介质   临界角

 

9.【解析】设入射光线与1/4球体的交点为C,连接OC,OC即为 入射点的法线。因此,图中的角α为入射角。过C点作球体水平表面的垂线,垂足为B。依题意,∠COB=α。又由△OBC知sinα=   设光线在C点的折射角为β,

由折射定律得                                                  

由以上式得                               图26

由几何关系知,光线在球体的竖直表面上的入射角γ(见图26)为30°。由折射定律得                 因此,所以

【答案】

10.【解析】(1)设光在介质中的传播速度为v,波长为λ,频率为f,则

         f=                     ①

                     ②

联立①②式得             ③

从波形图上读出波长m,代入数据解得

f=5×1014Hz

根据光线a在AC面的的入射角和折射角知玻璃砖的折射率,设此玻璃砖的临界角为,解得光线b在CD面上入射角和几何关系可知为,因为 ,故b在CD面上反生全反射;射到BD面的入射角由几何关系可知为,因 ,故不会发生全反射而从BD面射出.根据折射定律可求得出射光线与界面法线的夹角为,故上述光路如

图27所示。

【答案】(1)f=5×1014Hz(2)图27所示

                                                      图27

 

11.【解析】当线光源上某一点发出的光线射到未被遮光板遮住的液面上时,射到遮光边缘O的那条光线的入射角最小。如图28所示

若线光源底端在A点时,望远镜内刚好可以看到此光源底端,

设过O点液面的法线为OO1,则   

                ①

其中a为此液体到空气的全反射临界角。由折射定律有

           ②                             图28

同理,若线光源顶端在B1点时,通过望远镜刚好可以看到此光源顶端,则。设此时线光源底端位于B点。由图中几何关系可得

          ③

联立②③式得              ④

【答案】

 

名校试题

1.【解析】 红光折射率小于蓝光折射率,由折射率公式n=c/v知红光在同种介质中的速度较大,即V1>V2; 由全反射公式sinc=1/n知红光折射率小临界角大; 所以蓝光发生全反射时红光依然有折射现象。选C

【答案】C

2.【解析】由于没有确定几何尺寸,所以光线可能射向Q的右侧面,也可能射向Q的下表面,A错误;当光线射向Q的下表面时,它的入射角与在P中的折射角相等,由于nP<nQ,进入空气中的折射角大于进入P上表面的入射角,那么出射光线与下表面的夹角一定小于θ,B、C错误,D正确。

【答案】D

3.【解析】由能量守恒可知,A正确,B错误;由光子学说及光电效应的规律可知,C错误,D正确。

【答案】AD

4.【解析】两块捏紧的玻璃板表面看到彩色条纹是薄膜干涉,狭缝观察发光的白炽灯也会看到彩色条纹是单缝衍射

【答案】C

5.【解析】单缝衍射的条纹是不等间距,中央亮纹又宽又亮

【答案】D

6.【解析】(1)ADEG

(2)如图29所示,   

x=d(tanr2-tanr1)=d

  【答案】(1)ADEG    (2)d

 

7.【解析】反射角60°                 ③                 

由折射定律                                                 

                        ④

解得折射角r = 30°                   ⑤

因此反射光束1和透射光束2之间的夹角

【答案】

8.【解析】①连接BC,如图30所示

在B点光线的入射角、折射角分别

标为i、r,

Sini=5/10=/2, 所以,                             图30

i=45°

由折射率定律:

在B点有:                            

Sin r=1/2  故:r=30°   BC=2Rcos r     t= BCn/C=2Rncos r/C

t=(/3) ×10-9s

②由几何关系

可知        α=30°

【答案】(1)t=(/3) ×10-9s  (2)α=30°

 

9.【解析】①P3 应刻的折射率  

  

② 最靠近0C边的是紫光;

增大入射角度,紫光在刻度盘上最先消失

【答案】(1)    (2)紫光在刻度盘上最先消失

(3)该束光线第一次从CD面出射时的折射角。          

(结果可用三角函数表示)

10.【解析】(1)设光在AD面的入射角、折射角分别为i、r  r=30°

    根据  

  

(2)根据   

(3)光路如图31所示 

ab光线在AB面的入射角为45°

设玻璃的临界解为C,则

sin45°>0.67,因此光线ab在AB面会发生全反射

光线在CD面的入射角r′=r=30°                               图31

根据 ,光线CD面的出射光线与法线的夹角

   由折射定律有:      ①

又由几何关系有:              ②

解①②得 

光线PC离直线AB的距离CD=Rsinα=10cm(1分)

则距离直线AB10cm的入射光线经折射后能到达B点.

【答案】(1)    (2)    (3)

11.【解析】光恰要发生全反射时的临界线射到屏幕S上的

E点到亮区中心O′的距离r,就是所求最大半径,

设临界角为C,如图所示

     …………①                                      

    又 …………②

     …………③

    解得 …………④

【答案】

12.【解析】由光电效应规律可知:当阴极发射的光电子全部达到阳极A时,光电流达到饱和,由电流可知每秒到达阳极的电子数,即每秒发射的电子数.由爱因斯坦光电效应方程可计算最大的初动能,光强加倍,每秒钟发射的光电子数加倍,但入射光频率不变,发射的光电子的最大初动能不变.                                 

(1)光电流达到饱和时,阴极发射的光电子全部到达阳极A,阴极每秒钟发射的光电子的个数

根据爱因斯坦光电方程,光电子的最大初动能:

J

J.

(2)如果照射光的频率不变,光强加倍,根据光电效应实验规律,阴极每秒发射的光电子数

光电子的最大初动能仍然是J.

【答案】(1)J.    (2)J.

考点预测题

1.【解析】物体S和它的虚像S'以平面镜来说总是对称的,因此平面镜以速度v沿OS方向向光源靠近时,若以平面镜为参照物,则不难看出S是沿SS'连线逐渐向平面镜靠近,所以S'也是沿SS'连线逐渐向平面镜移动。由几何知识和平面镜成像特点可求出答案。设平面镜从图32所示的位置Ⅰ,移动位置Ⅱ,沿OS方向向光源移动的距离为L,速度v=与此同时,光源S沿S'连线向平面镜移动距离d=Lsin30°,据物像对称规律可知虚像沿SS'连线向平面镜移动d=Lsin30°,所以像S'沿SS'连线向光源移动的距离为d'=2d=L。则像移动速率为v'=,故选C                                         

【答案】C                                                    图32

2.【解析】根据光的直线传播,可以作出人影形成的图像,由图中的几何关系,可以求出路灯距地面的高度。如图33所示,设图中A点为路灯位置,AB为由路灯向地面引的垂线,GE为题述某时刻人的位置,ED为此刻地面上他的影子;再过2s,人位于HF,其对应影子则位于FC.则由题意有:EF=vt=2m

由于△ABD∽△GED,故有

  ----------①

由于△ABC∽△HFC,故有                     图33

  -----------②

以GE=HF=1.7m,ED=1.3m,EC=EF十FC=2m+1.8m=3.8m分别代入①②两式联立解之可得路灯距地面的高度为AB=8.5m

【答案】8.5m

3.【解析】因为同种介质对紫光的折射率较大,故入射角相同时,紫光侧移距离较大,A、B项错;设入射角为i,折射角为r,则侧移距离,可见对于同一种色光,入射角越大,侧移距离越大,D项正确。

【答案】D

4.【解析】点光源s射向圆形木板边缘的光线进入水中后折向水底,在水底以O为圆心,以R为半径的圆形区域是点光源s发射的光线照射不到的影区(如图34)

                      

【答案】 

 

图34

5.【解析】本题考查光的折射有关的知识,本题为中等难度题目。由该棱镜的折射率为可知其临界角C满足:,可求出GG1右边的入射光线没有发生全反射,其左边的光线全部发生全反射。所以光线只能从圆弧NG1射出。

【答案】B

6.【解析】如图35所示,光线射到A或B时,入射角大于临界角,发生全反射,而后由几何关系得到第二次到达界面的时候垂直打出.O点为∆ABC的重心,设EC=x,则由几何关系得到: .解得光斑半径x=2r

【答案】C                                                   图35

 

7.【解析】衍射现象说明光具有波动性,利用衍射条纹的图样与障碍物的形状对应,可以让光携带不同的信息。所以选项BC正确。

【答案】BC

8.【解析】撤去一张纸后劈形空气的薄膜的劈势减缓,相同水平距离上,劈势厚度变化减小,以致波程差变化减小,条纹变宽,条纹数量变少(变疏)故A正确。

【答案】A

9.【解析】真空玻璃管上采用镀膜技术,利用的是从镀膜前后表面反射回的相互叠加,增加光的强度,该技术对镀膜的厚度有要求,即镀膜厚度应为自然光中主要色光的半波长的整数倍,故该技术运用了光的干涉原理

【答案】C

10.【解析】太阳光是自然光,沿各个方向振动的光都有,所以在偏振片另一侧可看到透射光;沿竖直方向振动的光,与的透振方向相同,能透过偏振光;沿与竖直方向成45°角的透振光,有部分能透过偏振片,故选ABD正确。

【答案】ABD

11.【解析】玻璃的透振方向是允许透过的偏振方向。要能看清自己车灯发出的光所照亮的物体,即车灯的透射炮经对面物体反射后能进入本车车窗玻璃,则同一车前窗玻璃和前灯玻璃的透振方向必须相同,选项AC错;若使对面的车灯不进入车窗玻璃,则车窗玻璃的透振方向和对面车灯的透振方向必须竖直,B项中对面车灯光的偏振方向和本车车窗玻璃的透射方向相同,而D项符合垂直条件,故选项D正确。

【答案】D

12.【解析】因光子的频率为=,又a、b、c三束单色光波长关系abc,得abd,已知用b光束照射某种金属时,恰能发生光电效应,则c光束照射能发生光电效应,a光不能,故B、C错,由光电效应方程Ek=h-W,则c光束照射时,释放出的光电子的最大初动能最大,D错,所以只有A正确。

【答案】A

13.【解析】由爱因斯坦光电效应方程列式    ①

又因为                                     ②

联立上式得:

【答案】

 

14.【解析】(1) hνmin= hc/λmax =13.6×1.6×10-19=2.2×10-18  J

        λmax=6.63 ×10-34×3×108 /2.2×10-18 =9.1×10-8  m

(2)       hν0 =hc/λ=w=3.6×1.6×10-19 =5.76×10-19J

λ=6.63 ×10-34×3×108 /5.76×10-19 =3.5×10-7m

(3)  EKA ?EKK = e U ,EKK=hν-w

              EKA=eU+ EKK =eU+hν-w=20+13.6-3.6=30eV

【答案】(1)9.1×10-8  m (2)3.5×10-7m    (3)30eV

 

 

高考资源网