当 .即时.上式取等号.故的最小值是3. 查看更多

 

题目列表(包括答案和解析)

首先,我们看两个问题的解答:
问题1:已知x>0,求数学公式的最小值.
问题2:已知t>2,求数学公式的最小值.
问题1解答:对于x>0,我们有:数学公式数学公式.当数学公式,即数学公式时,上述不等式取等号,所以数学公式的最小值数学公式
问题2解答:令x=t-2,则t=x+2,于是数学公式
由问题1的解答知,数学公式的最小值数学公式,所以数学公式的最小值是数学公式
弄清上述问题及解答方法之后,解答下述问题:
在直角坐标系xOy中,一次函数y=kx+b(k>0,b>0)的图象与x轴、y轴分别交于A、B两点,且使得△OAB的面积值等于|OA|+|OB|+3.
(1)用b表示k;
(2)求△AOB面积的最小值.

查看答案和解析>>

首先,我们看两个问题的解答:
问题1:已知x>0,求的最小值.
问题2:已知t>2,求的最小值.
问题1解答:对于x>0,我们有:.当,即时,上述不等式取等号,所以的最小值
问题2解答:令x=t-2,则t=x+2,于是
由问题1的解答知,的最小值,所以的最小值是
弄清上述问题及解答方法之后,解答下述问题:
在直角坐标系xOy中,一次函数y=kx+b(k>0,b>0)的图象与x轴、y轴分别交于A、B两点,且使得△OAB的面积值等于|OA|+|OB|+3.
(1)用b表示k;
(2)求△AOB面积的最小值.

查看答案和解析>>

如图1,在平面直角坐标系中,已知点A(0,4
3
),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒
3
个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求精英家教网出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.

查看答案和解析>>

如图1,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.

查看答案和解析>>

如图1,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.

查看答案和解析>>


同步练习册答案