(2)设集合. 试判断集合和之间的关系.并给出证明, 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么
(1)设△POQ的面积为y,求y关于t的函数解析式;
(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;
(3)当t为何值时,△POQ与△AOB相似.

查看答案和解析>>

(2012•丰泽区质检)如图,已知抛物线y=-
14
x2+bx+4
经过点(-2,0),与y轴交于A点,与x轴交于B、C两点.
(1)求b的值;
(2)设以线段BC为直径的圆的圆心为点D,试判断点A与⊙D的位置关系,并说明理由;
(3)设P是抛物线上一个动点,且点P位于第一象限内,求当四边形PAOC的面积最大时,求点P的坐标.

查看答案和解析>>

如图,抛物线y=-x2+2mx+m+2的图象与x轴交于A(-1,0),B两点,在x轴上方且平精英家教网行于x轴的直线EF与抛物线交于E,F两点,E在F的左侧,过E,F分别作x轴的垂线,垂足是M,N.
(1)求m的值及抛物线的顶点坐标;
(2)设BN=t,矩形EMNF的周长为C,求C与t的函数表达式;
(3)当矩形EMNF的周长为10时,将△ENM沿EN翻折,点M落在坐标平面内的点记为M',试判断点M'是否在抛物线上?并说明理由.

查看答案和解析>>

(2012•兰州)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=
2
3
x2+bx+c经过点B,且顶点在直线x=
5
2
上.
(1)求抛物线对应的函数关系式;
(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;
(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.

查看答案和解析>>

如图,在等腰梯形AOBC中,AC∥OB,OA=BC.以O为原点,OB所在直线为x轴建立直角坐精英家教网标系xoy,已知已知A(2,2
3
),B(8,0).
(1)直接写出点C的坐标,并求出等腰梯形AOBC的面积;
(2)设D为OB的中点,以D为圆心,OB长为直径作⊙D,试判断点A与⊙D的位置关系;
(3)在第一象限内确定点M,使△MOB与△AOB相似,求出所有符合条件的点M的坐标.

查看答案和解析>>


同步练习册答案