中所求的取值范围内的任意参数.函数在区间内都是增函数.求实数的取值范围.点评:本小题主要考查运用导数研究函数的单调性及极值.解不等式等基本知识.考查综合分析和解决问题的能力.以及分类讨论的数学思想和方法.③函数向量解析几何 查看更多

 

题目列表(包括答案和解析)

(2011•大田县质检)数学兴趣小组对二次函数y=ax2+2x+3(a≠0)的图象进行研究得出一条结论:无论a取任何不为0的实数,抛物线顶点p都在某一条直线上.请你用“特殊-一般-特殊”的数学思想方法进行探究:
(1)完成下表
a的取值 -1 1
顶点p的坐标
并猜想抛物线y=ax2+2x+3(a≠0)顶点p所在直线的解析式;
(2)请对(1)中所猜想的直线解析式加以验证、在所求的直线上有一个点不是抛物线y=ax2+2x+3(a≠0)的顶点,请你写出它的坐标;
(3)当a=-1时,则抛物线y=-x2+2x+3的顶点为P,交x轴于点A(3,0),交y轴于点C、试探究在抛物线y=-x2+2x+3上是否存在除点P以外的点E,使得△ACE与△APC的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.

查看答案和解析>>

数学兴趣小组对二次函数y=ax2+2x+3(a≠0)的图象进行研究得出一条结论:无论a取任何不为0的实数,抛物线顶点p都在某一条直线上.请你用“特殊-一般-特殊”的数学思想方法进行探究:
(1)完成下表
a的取值-11
顶点p的坐标
并猜想抛物线y=ax2+2x+3(a≠0)顶点p所在直线的解析式;
(2)请对(1)中所猜想的直线解析式加以验证、在所求的直线上有一个点不是抛物线y=ax2+2x+3(a≠0)的顶点,请你写出它的坐标;
(3)当a=-1时,则抛物线y=-x2+2x+3的顶点为P,交x轴于点A(3,0),交y轴于点C、试探究在抛物线y=-x2+2x+3上是否存在除点P以外的点E,使得△ACE与△APC的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.

查看答案和解析>>

数学兴趣小组对二次函数y=ax2+2x+3(a≠0)的图象进行研究得出一条结论:无论a取任何不为0的实数,抛物线顶点p都在某一条直线上.请你用“特殊-一般-特殊”的数学思想方法进行探究:
(1)完成下表

a的取值-11
顶点p的坐标

并猜想抛物线y=ax2+2x+3(a≠0)顶点p所在直线的解析式;
(2)请对(1)中所猜想的直线解析式加以验证、在所求的直线上有一个点不是抛物线y=ax2+2x+3(a≠0)的顶点,请你写出它的坐标;
(3)当a=-1时,则抛物线y=-x2+2x+3的顶点为P,交x轴于点A(3,0),交y轴于点C、试探究在抛物线y=-x2+2x+3上是否存在除点P以外的点E,使得△ACE与△APC的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.
作业宝

查看答案和解析>>

24、基公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元.
(1)该公司有哪几种进货方案?
(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?
(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.

查看答案和解析>>

如图,在直角坐标系中,点A、B的坐标分别为(-3,0)、(0,3).
(1)一次函数图象上的两点P、Q在直线AB的同侧,且直线PQ与y轴交点的纵坐标大于3,若△PAB与△QAB的面积都等于3,求这个一次函数的解析式;
(2)二次函数的图象经过点A、B,其顶点C在x轴的上方且在直线PQ上,求这个二次函数的解析式;
(3)若使(2)中所确定的抛物线的开口方向不变,顶点C在直线PQ上运动,当点C运动到点精英家教网C′时,抛物线在x轴上截得的线段长为6,求点C′的坐标.

查看答案和解析>>


同步练习册答案