点评:此题主要考查怎样用.注意分两步进行. 查看更多

 

题目列表(包括答案和解析)

图中各圆的三个数之间都有相同的规律,据此规律,第n个圆中,m=  (用含n的代数式表示).

考点:

规律型:图形的变化类;规律型:数字的变化类。

分析:

根据8=2×4,5×7=35,8×10=80,得出2,5,8…第n个数为:2+3(n﹣1),4,7,10,…第n个数为:4+3(n﹣1)即可得出第n个圆中,m的值.

解答:

解:∵2×4=8,

5×7=35,

8×10=80,

∴2,5,8…第n个数为:2+3(n﹣1),

4,7,10,…第n个数为:4+3(n﹣1),

∴第n个圆中,m=[2+3(n﹣1)]×[4+3(n﹣1)]=(3n+1)(3n﹣1)=9n2﹣1.

故答案为:9n2﹣1.

点评:

此题主要考查了数字变化规律,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.

查看答案和解析>>

如图,抛物线经过三点.

(1)求该抛物线的解析式;

(2)在该抛物线的对称轴上存在一点,使的值最小,求点的坐标以

的最小值;

(3)在轴上取一点,连接.现有一动点以每秒个单位长度的速度从点出发,沿线段向点运动,运动时间为秒,另有一动点以某一速度同时从点出发,沿线段向点运动,当点、点两点中有一点到达终点时,另一点则停止运动(如右图所示).在运动的过程中是否存在一个值,使线段恰好被垂直平分.如果存在,请求出的值和点的速度,如果不存在,请说明理由.

【解析】此题主要考查了用待定系数法求二次函数解析式,以及利用函数图象和图象上点的性质判断符合某一条件的点是否存在,是一道开放性题目,有利于培养同学们的发散思维能力

 

查看答案和解析>>

在如图边长为7.6的正方形的角上挖掉一个边长为2.6的小正方形,剩余的图形能否拼成一个矩形?若能,画出这个矩形,并求出这个矩形的面积是多少.

【解析】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式

 

查看答案和解析>>

在如图边长为7.6的正方形的角上挖掉一个边长为2.6的小正方形,剩余的图形能否拼成一个矩形?若能,画出这个矩形,并求出这个矩形的面积是多少.

【解析】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式

 

查看答案和解析>>

【答案】1.1×107

【考点】科学记数法—表示较大的数.

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

【解答】将11000000用科学记数法表示为:1.1×107

故答案为:1.1×107

【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

查看答案和解析>>


同步练习册答案