解法一:令y=log5(x2+1).可得5y= x2+1,学科网 查看更多

 

题目列表(包括答案和解析)

已知直三棱柱中, , , 的交点, 若.

(1)求的长;  (2)求点到平面的距离;

(3)求二面角的平面角的正弦值的大小.

【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3

第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为

解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 ……………  5分

(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分

(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB

CHE为二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分

解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h)  ……… 4分

·=0,  h=3

(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)

点A到平面ABC的距离为H=||=……… 8分

(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小满足cos== ………  11分

二面角C-AB-C的平面角的正弦大小为

 

查看答案和解析>>

研究问题:“已知关于x的方程ax2-bx+c=0的解集为{1,2},解关于x的方程cx2-bx+a=0”,有如下解法:
解:由ax2-bx+c=0⇒a-b(
1
x
)+c(
1
x
)2=0
,令y=
1
x
,则y∈{
1
2
, 1}

所以方程cx2-bx+a=0的解集为{
1
2
, 1}

参考上述解法,已知关于x的方程4x+3•2x+x-91=0的解为x=3,则
关于x的方程log2(-x)-
1
x2
+
3
x
+91=0
的解为
x=-
1
8
x=-
1
8

查看答案和解析>>

研究问题:“已知关于x的不等式ax2-bx+c>0的解集为(1,2),解关于x的不等式cx2-bx+a>0”,有如下解法:
解:由ax2-bx+c>0?a-b(
1
x
)+c(
1
x
)2>0
,令y=
1
x
,则y∈(
1
2
, 1)
,所以不等式cx2-bx+a>0的解集为(
1
2
, 1)

参考上述解法,已知关于x的不等式
k
x+a
+
x+b
x+c
<0
的解集为(-2,-1)∪(2,3),求关于x的不等式
kx
ax-1
+
bx-1
cx-1
<0
的解集.

查看答案和解析>>

(2010•重庆一模)设集合A={(x,y)|x2+y2≤1},集合B={(x,y)|log|x||y|≤log|y||x|,|x|<1,|y|<1},则在直角坐标平面内,A∩B所表示的平面区域的面积为(  )

查看答案和解析>>

研究问题:“已知关于x的不等式ax2-bx+c>0的解集为(1,2),则关于x的不等式cx2-bx+a>0有如下解法:由ax2-bx+c>0?a-b(
1
x
)+c(
1
x
)2>0
,令y=
1
x
,则y∈(
1
2
,1)
,所以不等式cx2-bx+a>0的解集为(
1
2
,1)
.参考上述解法,已知关于x的不等式
k
x+a
+
x+b
x+c
<0
的解集为(-2,-1)∪(2,3),则关于x的不等式
kx
ax-1
+
bx-1
cx-1
<0
的解集
 

查看答案和解析>>


同步练习册答案