题目列表(包括答案和解析)
一个光滑圆环固定在竖直平面内,环上套着两个小球A和B(中央有孔),A、B间由细线连接着,它们处于如图中所示位置时恰好都能保持静止状态。此情况下,B球与环中心O处于同一水平面上,AB间的细绳呈伸直状态,与水平线成300夹角。已知B球的质量为m,求:【小题1】细绳对B球的拉力和A球的质量;![]()
【小题2】若剪断细线瞬间A球的加速度;
【小题3】剪断细线后,B球第一次过圆环最低点时对圆环的压力。
如图,A为半径为R的光滑圆轨道的最低点,B、C为两个完全相同的小球(均可看成质点),将B球放在A的正上方高度为h处,将C球放在离A很近的轨道上,让B、C球同时由静止开始运动(不计空气阻力),设C球第一次到达A点时与B球相遇。则h与R的应满足什么关系?
![]()
如图2所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.05 T的匀强磁场与导轨所在平面垂直(图中未画出),导轨的电阻很小,可忽略不计.导轨间的距离l=0.20 m.两根质量均为m=0.10 kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻均为R=0.50 Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动.经过t=5.0 s,金属杆甲的加速度为a=1.37 m/s2.问此时两金属杆的速度各为多少??
![]()
图2
【解析】设t=5.0 s时两金属杆甲、乙之间的距离为x,速度分别为v1和v2,经过很短的时间Δt,杆甲移动距离v1Δt,杆乙移动距离v2Δt,回路面积改变ΔS=[(x-v2Δt)+v1Δt]l-lx=(v1-v2)lΔt.由法拉第电磁感应定律知,回路中的感应电动势
回路中的电流![]()
对杆甲由牛顿第二定律有F-BlI=ma
由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以t=5.0 s时两杆的动量(t=0时为0)等于外力F的冲量Ft=mv1+mv2
联立以上各式解得
![]()
![]()
代入数据得v1=8.15 m/s,v2=1.85 m/s.
如图2所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.05 T的匀强磁场与导轨所在平面垂直(图中未画出),导轨的电阻很小,可忽略不计.导轨间的距离l=0.20 m.两根质量均为m=0.10 kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻均为R=0.50 Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动.经过t=5.0 s,金属杆甲的加速度为a=1.37 m/s2.问此时两金属杆的速度各为多少??
图2
【解析】设t=5.0 s时两金属杆甲、乙之间的距离为x,速度分别为v1和v2,经过很短的时间Δt,杆甲移动距离v1Δt,杆乙移动距离v2Δt,回路面积改变ΔS=[(x-v2Δt)+v1Δt]l-lx=(v1-v2)lΔt.由法拉第电磁感应定律知,回路中的感应电动势回路中的电流
对杆甲由牛顿第二定律有F-BlI=ma
由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以t=5.0 s时两杆的动量(t=0时为0)等于外力F的冲量Ft=mv1+mv2
联立以上各式解得
代入数据得v1=8.15 m/s,v2=1.85 m/s.
如图所示,木块A的右侧为光滑曲面,且下端极薄,其质量为2.0㎏,静止于光滑水平面上,一质量为2.0㎏的小球B以2.0m/s的速度从右向左运动冲上A的曲面,与A发生相互作用.【6】
![]()
(1)B球沿A曲面上升的最大高度(设B球不能飞出去)是( ).【2】
(A)0.40m (B)0.20m
(C)0.10m (D)0.05m
(2)B球沿A曲面上升到最大高度处时的速度是( ).【2】
(A)0 (B)1.0m/s (C)0.71m/s (D)0.50m/s
(3)B球与A曲面相互作用结束后,B球的速度是( ).【2】
(A)0 (B)1.0m/s (C)0.71m/s (D)0.50m/s
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com