10.已知函数f(x)=ax2+2ax+4,若x1<x2,x1+x2=1-a,则A.f(x1)<f(x2) B.f(x1)=f(x2) C.f(x1)>f(x2) D.f(x1)与f(x2)的大小不能确定 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=a|x|+
2
ax
(x∈
R,a>1),
(1)求函数f(x)的值域;
(2)记函数g(x)=f(-x),x∈[-2,+∞),若g(x)的最小值与a无关,求a的取值范围;
(3)若m>2
2
,直接写出(不需给出演算步骤)关于x的方程f(x)=m的解集.

查看答案和解析>>

已知函数f(x)=
a+log2x,x≥2
x-
b
x-2
,x<2
(a,b为常数),在R上连续,则a的值是(  )

查看答案和解析>>

已知函数f(x)=a+
2
bsin(x+
π
4
)
的图象过点(0,1),当x∈[0,
π
2
]
时,f(x)的最大值为2
2
-1.
(1)求f(x)的解析式;
(2)写出由f(x)经过平移 变换得到的一个奇函数g(x)的解析式,并说明变化过程.

查看答案和解析>>

(2009•黄浦区一模)已知函数f(x)=
a-x
x-a-1
的反函数是y=f-1(x),且点(2,1)在
y=f-1(x)的图象上,则实数a=
1
3
1
3

查看答案和解析>>

已知函数f(x)=(a-
12
)x2-lnx(a∈R)

(I)当a=l时,求f(x)在(0,e]上的最小值;
(Ⅱ)若在区间(1,+∞)上,函数f(x)<2ax恒成立,求实数a的取值范围.

查看答案和解析>>

1――12   A  B  B  B  B  C  D  D  C  A  C  B

 

13、1            14、e             15、      16、①②④     

17、解上是增函数,

方程=x2 + (m ? 2 )x + 1 = 0的两个根在0至3之间

<m≤0

依题意得:m的取值范围是:<m≤-1或m>0

18、解:(1),

当a=1时 解集为

当a>1时,解集为

当0<a<1时,解集为

(2)依题意知f(1)是f(x)的最小值,又f(1)不可能是端点值,则f(1)是f(x)的一个极小值,由

19、解:(1)当所以f(-x)=-(-x)2-(-x)+5=-x2+x+5,

 

所以f(x)=

(2)由题意,不妨设A点在第一象限,坐标为(t,-t2-t+5)其中,

则S(t)=S ABCD=2t(-t2-t+5)=-2t3-2t2+10t.

(舍去),t2=1.

,所以S(t)在上单调递增,在上单调递减,

所以当t=1时,ABCD的面积取得极大值也是S(t)在上的最大值。

从而当t=1时,矩形ABCD的面积取得最大值6.

20、解:

21、解:

,要使在其定义域内为单调函数,只需内满足:恒成立.

① 当时,,∵,∴,∴

内为单调递减.  

② 当时,,对称轴为, ∴.

只需,即

内为单调递增。

 ③当时,,对称轴为.

只需,即恒成立.

综上可得,.     

22、解:(Ⅰ)

       

        同理,令

        ∴f(x)单调递增区间为,单调递减区间为.

        由此可知

   (Ⅱ)由(I)可知当时,有

        即.

    .

  (Ⅲ) 设函数

       

        ∴函数)上单调递增,在上单调递减.

        ∴的最小值为,即总有

        而

       

        即

        令

       

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步练习册答案