设定义域为R的函数f(x)满足.且f(-1)=.则f 查看更多

 

题目列表(包括答案和解析)

设定义域为R的函数f(x)满足下列条件:①对任意x∈R,f(x)+f(-x)=0;②对任意x1,x2∈[1,a],当x2>x1时,有f(x2)>f(x1)>0.则下列不等式不一定成立的是(  )
A、f(a)>f(0)
B、f(
1+a
2
)>f(
a
)
C、f(
1-3a
1+a
)>f(-3)
D、f(
1-3a
1+a
)>f(-a)

查看答案和解析>>

设定义域为R的函数f(x)满足下列条件:①对任意x∈R,f(x)+f(-x)=0;②对任意x∈[-1,1],都有
f(x1)-f(x2)  
x1-x2
>0
,且f(-1)=-1.若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是(  )

查看答案和解析>>

设定义域为R的函数f(x)满足下列条件:对任意x∈R,f(x)+f(-x)=0,且对任意x1,x2∈[1,a](a>1),当x2>x1时,有f(x2)>f(x1)>0.给出下列四个结论:
①f(a)>f(0)
f(
1+a
2
)>f(
a
)

f(
1-3a
1+a
)>f(-3)

f(
1-3a
1+a
)>f(-a)

其中所有的正确结论的序号是
 

查看答案和解析>>

设定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时,f(x)<0恒成立.
(1)判断f(x)的奇偶性及单调性,并对f(x)的奇偶性结论给出证明;
(2)若函数f(x)在[-3,3]上总有f(x)≤6成立,试确定f(1)应满足的条件;
(3)解x的不等式
1
n
f(x2)-f(x)>
1
n
f(ax)-f(a)
(n是一个给定的正整数,a∈R).

查看答案和解析>>

设定义域为R的函数f(x)满足,且f(-1)=

 

则f(2006)的值为                                         (    )

A.-1                B.1             C.2006            D.

 

 

查看答案和解析>>

1――12   A  B  B  B  B  C  D  D  C  A  C  B

 

13、1            14、e             15、      16、①②④     

17、解上是增函数,

方程=x2 + (m ? 2 )x + 1 = 0的两个根在0至3之间

<m≤0

依题意得:m的取值范围是:<m≤-1或m>0

18、解:(1),

当a=1时 解集为

当a>1时,解集为

当0<a<1时,解集为

(2)依题意知f(1)是f(x)的最小值,又f(1)不可能是端点值,则f(1)是f(x)的一个极小值,由

19、解:(1)当所以f(-x)=-(-x)2-(-x)+5=-x2+x+5,

 

所以f(x)=

(2)由题意,不妨设A点在第一象限,坐标为(t,-t2-t+5)其中,

则S(t)=S ABCD=2t(-t2-t+5)=-2t3-2t2+10t.

(舍去),t2=1.

,所以S(t)在上单调递增,在上单调递减,

所以当t=1时,ABCD的面积取得极大值也是S(t)在上的最大值。

从而当t=1时,矩形ABCD的面积取得最大值6.

20、解:

21、解:

,要使在其定义域内为单调函数,只需内满足:恒成立.

① 当时,,∵,∴,∴

内为单调递减.  

② 当时,,对称轴为, ∴.

只需,即

内为单调递增。

 ③当时,,对称轴为.

只需,即恒成立.

综上可得,.     

22、解:(Ⅰ)

       

        同理,令

        ∴f(x)单调递增区间为,单调递减区间为.

        由此可知

   (Ⅱ)由(I)可知当时,有

        即.

    .

  (Ⅲ) 设函数

       

        ∴函数)上单调递增,在上单调递减.

        ∴的最小值为,即总有

        而

       

        即

        令

       

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步练习册答案