题目列表(包括答案和解析)
(本题满分14分)
已知实数
,曲线
与直线
的交点为
(异于原点
),在曲线
上取一点
,过点
作
平行于
轴,交直线
于点
,过点
作
平行于
轴,交曲线
于点
,接着过点
作
平行于
轴,交直线
于点
,过点
作
平行于
轴,交曲线
于点
,如此下去,可以得到点
,
,…,
,… . 设点
的坐标为
,
.
(Ⅰ)试用
表示
,并证明
;
(Ⅱ)试证明
,且
(
);
(本题满分14分)
已知函数
图象上一点
处的切线方程为
.
(Ⅰ)求
的值;
(Ⅱ)若方程
在
内有两个不等实根,求
的取值范围(其中
为自然对数的底数);
(Ⅲ)令
,若
的图象与
轴交于
,
(其中
),
的中点为
,求证:
在
处的导数
.
(本题满分14分)
已知曲线
方程为
,过原点O作曲线
的切线![]()
(1)求
的方程;
(2)求曲线
,
及
轴围成的图形面积S;
(本题满分14分)
已知中心在原点,对称轴为坐标轴的椭圆,左焦点
,一个顶点坐标为(0,1)
(1)求椭圆方程;
(2)直线
过椭圆的右焦点
交椭圆于A、B两点,当△AOB面积最大时,求直线
方程。
(本题满分14分)
如图,在直三棱柱
中,
,
,求二面角
的大小。
![]()
![]()
1――12 A B B B B C D D C A C B
13、1 14、e 15、
16、①②④
17、解
在
上是增函数,

方程
=x2 + (m ? 2 )x + 1 = 0的两个根在0至3之间
∴
∴
∴
<m≤0
依题意得:m的取值范围是:
<m≤-1或m>0
18、解:(1)
,
当a=1时 解集为
当a>1时,解集为
,
当0<a<1时,解集为
;
(2)依题意知f(1)是f(x)的最小值,又f(1)不可能是端点值,则f(1)是f(x)的一个极小值,由
,
19、解:(1)当
所以f(-x)=-(-x)2-(-x)+5=-x2+x+5,
所以f(x)=
(2)由题意,不妨设A点在第一象限,坐标为(t,-t2-t+5)其中,
,
则S(t)=S ABCD=2t(-t2-t+5)=-2t3-2t2+10t.
,
令
得
(舍去),t2=1.
当
时
,所以S(t)在
上单调递增,在
上单调递减,
所以当t=1时,ABCD的面积取得极大值也是S(t)在
上的最大值。
从而当t=1时,矩形ABCD的面积取得最大值6.
20、解:

21、解:
,
令
,要使
在其定义域
内为单调函数,只需
在
内满足:
或
恒成立.
① 当
时,
,∵
,∴
,∴
,
∴
在
内为单调递减.
② 当
时,
,对称轴为
, ∴
.
只需
,即
时
,
,
∴
在
内为单调递增。
③当
时,
,对称轴为
.
只需
,即
时
在
恒成立.
综上可得,
或
.
22、解:(Ⅰ)

同理,令
∴f(x)单调递增区间为
,单调递减区间为
.
由此可知
(Ⅱ)由(I)可知当
时,有
,
即
.
.
(Ⅲ) 设函数

∴函数
)上单调递增,在
上单调递减.
∴
的最小值为
,即总有
而

即
令
则


湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com