(Ⅰ)求函数的不动点, 查看更多

 

题目列表(包括答案和解析)

对于函数的“不动点”;若 的“稳定点”,函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即

   (1)求证:

   (2)若的取值范围.

查看答案和解析>>

已知函数f(x)=logax,g(x)=x,h(x)=ax
(1)若a=2,设m(x)=h(x)-g(x),n(x)=g(x)-f(x),当x>1时,试比较m(x)与n(x)的大小(只需要写出结果,不必证明);
(2)若a=
12
,设P是函数g(x)图象在第一象限上的一个动点,过点P作平行于x轴的直线
与函数h(x)和f(x)的图象分别交于A、B两点,过点P作平行于y轴的直线与函数h(x)和f(x)的图象分别交于C、D两点,求证:|AB|=|CD|.

查看答案和解析>>

已知函数f(x)=ex-
1
ex
g(x)=ex+
1
ex
,动直线x=t分别与函数y=f(x)、y=g(x)的图象分别交于点A(t,f(t))、B(t,g(t)),在点A处作函数y=f(x)的图象的切线,记为直线l1,在点B处作函数y=g(x)的图象的切线,记为直线l2
(Ⅰ)证明:不论t取何实数值,直线l1与l2恒相交;
(Ⅱ)若直线l1与l2相交于点P,试求点P到直线AB的距离;
(Ⅲ)当t<0时,试讨论△PAB何时为锐角三角形?直角三角形?钝角三角形?

查看答案和解析>>

已知函数f(x)=logax,g(x)=x,h(x)=ax
(1)若a=2,设m(x)=h(x)-g(x),n(x)=g(x)-f(x),当x>1时,试比较m(x)与n(x)的大小(只需要写出结果,不必证明);
(2)若数学公式,设P是函数g(x)图象在第一象限上的一个动点,过点P作平行于x轴的直线
与函数h(x)和f(x)的图象分别交于A、B两点,过点P作平行于y轴的直线与函数h(x)和f(x)的图象分别交于C、D两点,求证:|AB|=|CD|.

查看答案和解析>>

已知函数f(x)=logax,g(x)=x,h(x)=ax
(1)若a=2,设m(x)=h(x)-g(x),n(x)=g(x)-f(x),当x>1时,试比较m(x)与n(x)的大小(只需要写出结果,不必证明);
(2)若a=
1
2
,设P是函数g(x)图象在第一象限上的一个动点,过点P作平行于x轴的直线
与函数h(x)和f(x)的图象分别交于A、B两点,过点P作平行于y轴的直线与函数h(x)和f(x)的图象分别交于C、D两点,求证:|AB|=|CD|.

查看答案和解析>>

一、       选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

A

C

C

C

D

B

B

C

C

B

二、填空题

题号

     11

    12

   13  

  14(1)

  14(2)

答案

   6

  2

 

  3

三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.

15.解:(Ⅰ),不等式的解为

(Ⅱ)由(Ⅰ)可知

16、解:

 

   (I)函数的最小正周期是        ……………………………7分

   (II)∴   ∴   

     ∴               

    所以的值域为:                 …………12分

17、解:(1)因为成等差数列,所以2f(2)=f(1)+f(4),

即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得

(2+m)2=(1+m)(4+m),得m=0.

(2) 若是两两不相等的正数,且依次成等差数列,设a=b-d,c=b+d,(d不为0);

f(a)+f(c)-2f(b)=log2(a+m)+log2(c+m)-2log2(b+m)=log2

因为(a+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0

所以:0<(a+m)(c+m)<(b+m)2,得0<<1,得log2<0,

所以:f(a)+f(c)<2f(b).

18. 解:(Ⅰ)的定义域关于原点对称

为奇函数,则  ∴a=0

(Ⅱ)∴在上单调递增

上恒大于0只要大于0即可,∴

上恒大于0,a的取值范围为

19. 解:(Ⅰ)设的公差为,则:

,∴,∴. ………………………2分

.  …………………………………………4分

(Ⅱ)当时,,由,得.     …………………5分

时,

,即.  …………………………7分

  ∴.   ……………………………………………………………8分

是以为首项,为公比的等比数列. …………………………………9分

(Ⅲ)由(2)可知:.   ……………………………10分

. …………………………………11分

.    ………………………………………13分

.  …………………………………………………14分

20.解:(Ⅰ)设函数

   (Ⅱ)由(Ⅰ)可知

可知使恒成立的常数k=8.

(Ⅲ)由(Ⅱ)知 

可知数列为首项,8为公比的等比数列

即以为首项,8为公比的等比数列. 则 

 


同步练习册答案