题目列表(包括答案和解析)
某班主任对全班50名学生进行迟到与学习成绩是否有关的调查,数据如下表:
|
已知函数
。
(1)求函数的最小正周期和最大值;
(2)求函数的增区间;
(3)函数的图象可以由函数
的图象经过怎样的变换得到?
【解析】本试题考查了三角函数的图像与性质的运用。第一问中,利用
可知函数的周期为
,最大值为
。
第二问中,函数
的单调区间与函数
的单调区间相同。故当
,解得x的范围即为所求的区间。
第三问中,利用图像将
的图象先向右平移
个单位长度,再把横坐标缩短为原来的
(纵坐标不变),然后把纵坐标伸长为原来的
倍(横坐标不变),再向上平移1个单位即可。
解:(1)函数
的最小正周期为
,最大值为
。
(2)函数
的单调区间与函数
的单调区间相同。
即![]()
所求的增区间为
,![]()
即![]()
所求的减区间为
,
。
(3)将
的图象先向右平移
个单位长度,再把横坐标缩短为原来的
(纵坐标不变),然后把纵坐标伸长为原来的
倍(横坐标不变),再向上平移1个单位即可。
| 学习成绩前26名 | 学习成绩后24名 | 总数 | |
| 从不迟到的 | 18 | 9 | 27 |
| 有过迟到的 | 8 | 15 | 23 |
| 总数 | 26 | 24 | 50 |
| 50×(18×15-8×9)2 |
| 27×23×24×26 |
| P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| A.97.5% | B.95% | C.90% | D.无充分根据 |
已知递增等差数列
满足:
,且
成等比数列.
(1)求数列
的通项公式
;
(2)若不等式
对任意
恒成立,试猜想出实数
的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列
公差为
,
由题意可知
,即
,解得d,得到通项公式,第二问中,不等式等价于
,利用当
时,
;当
时,
;而
,所以猜想,
的最小值为
然后加以证明即可。
解:(1)设数列
公差为
,由题意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等价于
,
当
时,
;当
时,
;
而
,所以猜想,
的最小值为
. …………8分
下证不等式
对任意
恒成立.
方法一:数学归纳法.
当
时,
,成立.
假设当
时,不等式
成立,
当
时,
,
…………10分
只要证
,只要证
,
只要证
,只要证
,
只要证
,显然成立.所以,对任意
,不等式
恒成立.…14分
方法二:单调性证明.
要证 ![]()
只要证
,
设数列
的通项公式
, …………10分
, …………12分
所以对
,都有
,可知数列
为单调递减数列.
而
,所以
恒成立,
故
的最小值为
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com